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6.1 THE CONTINUOUS WAVELET TRANSFORM

The continuous wavelet transform (CWT) is defined by

t—b

X(b,a) —)dt (6.1)

T/

One interpretation of the transform X (b, a) is that it provides a measure of
similarity between the signal z(¢) and the continuously translated and dilated
mother wavelet ¥(t). The inverse wavelet transform is then provided by

— b, dadb

o(t) = \/ch/ / X(b —)=— (6.2)
where F((t)) = (w) and

C”’:/, WP, (6.3)

||
Together, equations (6.1) and (6.2) form the continuous wavelet transform
pair.
For the inverse transform to exist, it is required that the admissibility
condition Cy, < oo be satisfied. The value Cy will in general not be finite if
the integrand blows up at w = 0. Hence it is required that

$(0) = 0 (6.4)

(Recall that () € L'(R) implies that 1 (w) is continuous.) If this condition
is only satisfied approximately, i.e., 1/;(0) = 0, then it is said to be almost
admissibile. For example, the Morlet wavelet is almost admissible. The ad-
missibility requirement given by Equation 6.4, may be interpreted further by
inverting the Fourier transformation. Recall that

= [ O; W(t)e “idt

Substituting w = 0 into the above results in

JIRCE (6.5)

So admissible mother wavelets have zero mean.
For future reference we define the scaled and translated window
1 t—b
gan(t) = —=(—
) = ()
where @ is the scale parameter and b is the shift parameter. The factor 1/+/|a|
ensures that the window is normalized at all scales, i.e.,

lp@I°=1, = lga@®)*=1 (6.6)
See Figure 6.1 for a display of the dilated and shifted Gaussian window.
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Properties of the Continuous Wavelet Transform
We may denote the CWT transform pair either as
W(z(t)) = X (b, a)

or as

z(t) « X(b,a)
Property 6.1.1. Linearity of the CWT.

W(z(t) +y(t)) = W(x(t)) + W(y(t)) (6.7)
Wi(ex(t)) = W(x(t)) (6.8)
Property 6.1.2. Shifting Property.
z(t) « X(b,a) (6.9)
z(t — tg) «— X (b—tg,a) (6.10)

Property 6.1.3. Scaling Property.

t b

o(=) = VaX(=, %) (6.11)
@ o«

Property 6.1.4. Energy Property

[t [ [ xwormate

— 00

(6.12)

Property 6.1.5. Linearity of the Wawelet. If the collection of functions
{vi(t)} are wavelets, i.e., they salisfy the admissibility condilion, then the

linear combination
Y(t) = Z cii(t)

K3

is also a wavelet (since it also satisfies the admissibility condition). See [82].

Wavelet Analysis in the Fourier Domain

It will be useful to know that the Fourier transform of the scaled and dilated
mother is given by

B0 o Ve ™(aw) = Gun(w)  (6.13)

danlt) — ﬁ -

In addition, the Fourier transform of the forward CWT is found using
Parseval’s equation, i.e.,

X (b,a) = (z(t), gas(1)) (6.14)
_ % X () Gop (@) dw (6.15)

— 00
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Substituting Equation (6.13) into the above gives the desired representation
of the CWT in the Fourier domain

X(b,a) = \QF [ B X (w)(aw)e™’dw (6.16)

6.1.1 Interpretting the CWT

In contrast to the STFT which produced a transformation of data to the
time-frequency domain (7,w), the wavelet transform transforms time-scale
plane (b,a). In the former case, it is standard to examine the graph of the
magnitude of the STFT |X(r,w)|. This time-frequency diagram is referred
to as the spectrogram. In the latter case, the spectrogram is replaced by
the scalogram which consists of the graph of the magnitude of the CWT, i.e.,
|X (b, @)|. In both cases there is an associated phase diagram, e.g., the polar
form of the CWT is
X (b,a) = | X (b, a)|e?®®)

Note also that both the STFT and the CWT map a 1-dimensional signal to
a 2-dimensional representation.

In what follows we consider localization features of the CWT which aid in
the interpretation of the scaleogram. Our presentation follows [26].

Time-Localization of the CWT.

For the moment, we assume that the wavelet 1 (¢) vanishes identically outside
the time domain [twmin, tmax] Where tmim < 0 and tmax > 0. Although this
condition may not be true in practice, the magnitude of the wavelet will in
general be very small, and approximately zero on this interval.

X (b,a) dependence on ty. We define the domain of influence of the signal
x(t) at the point ¢ = 1 to be the region in the (b, a)-plane such that the values
of X (b, a) are dependent on t.

To demonstrate the time-localization property of the CW'T we consider the
signal z(t) = §(t — tg). Substituting this choice for z(t) into equation (6.1)
gives
ﬁ/ 5t — to)p( =0t

X(ba)=

a

which integrates to

X(b,a)=

Note that 1(2-2) = 0 unless

to—b
a

[tmina tmax]
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\\
L

Fig. 6.1 This figure displays dilations and shifts of the Gaussian window ((t —b)/a)
for discrete values of b = —3,—-2,—1,0,1,2,3. Top: The dilation corresponding to
a = 2. Middle: ¢ = 1. Bottom: a =1/2.
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Fig. 6.2 Top: The scalogram of the Mexican hat wavelet transform of the delta

function centered at ¢ = 1. Bottom: The scalogram of the Morlet wavelet transform

of the same delta function.
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Fig. 6.3 Top: The scalogram of the Mexican hat wavelet transform of the monochro-
matic complex exponential z(t) = exp(it). Bottom: The scalogram of the Mexican
hat wavelet transform of the monochromatic complex exponential z(t) = exp(i2t).

This condition defines 2 lines, atmi + b = to and atpmax + b = tg, which
intersect at the point ¢ and delimit the region in the (b,a) plane for which
the transform X (b, a) depends on to. This situation is depicted in Figure 6.4.

The CWT X (b, a) of the delta function 6(¢ — 1) is shown in Figure 6.2 for
both the mexican hat wavelet and the Morlet wavelet. Observe that the width
of the transform is narrower for smaller scale parameter a. The projection of
the non-zero values of this transform fall into the domain of influence of the
pulse originating at ¢t = 1.

X (bo, ap) dependence ont. Another helpful question to consider is for which
values of ¢ does the signal x(t) contribute to the value of X (b, a) at the point
(bo, a9)? By examining Figure 6.4 we conclude that if

aotmin +bo <t < agtmax + bo

then the value of z(t) may influence the CWT at the point (b, ag).
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to

tmin \

to

free /1 X (b, a) (to)

a

Fig. 6.4 The triangular region is the domain of influence of the point ¢ on the con-
tinuous wavelet transform X (b, a)

Frequency-Localization of the CWT.

In the previous section we considered the how a localized signal z(t) in the
time domain could influence the the values of the CWT X (b,a). Now we
examine the same question but focus on the influence of a pure sinusoid on
the transform.

X (b,a) dependence on wg. Now we consider for which portion of the (b, a)
plane the CWT X (b, a) is influenced by the frequency wg. To examine this
let z(t) = exp(iwgt), the complex monochromatic signal with frequency wg.
Given that the Fourier transform of exp(iwot) is 2md(w —wp) we may compute
the CWT of z(t) using equation (6.16), i.e.,

X(ba)= @ /:X’ 276 (w — wo ) (aw)e™Pdw

from which we conclude that

X (b,a) = V/laly) (awo)e™?

If we now assume that the Fourier transform of the wavelet is band-limited,

ie., 1/;((,0) = 0 whenever w ¢ [wmin, Wmax)- Hence, in general,

Wmin Wmax
=0 if —
¥ (awo) if woe[——=,—~I




THE CONTINUOUS WAVELET TRANSFORM 203

Fig. 6.5 The domain of influence for the monochromatic signal z(t) = exp(iwot).
Note that higher frequencies influence fewer coefficients.

Hence,

X(b,a) =0 unless wq ¢ [wmin, @]
a a

In other words, the domain of influence of wy on X (b, a) is the horizontal strip
defined by

Ymin -, < Ymax (6.17)

wo wo

The larger the value of wy, i.e., the higher the frequency of the monochromatic
signal, the smaller the region of influence; see Figure 6.5.

The actual CWT of exp(iwgt) using the Mexican hat wavelet is shown in
Figure 6.3 for 2 different values of wy. Compare this with Figure 6.6 which
displays the CWT of the signal sin(wg). The magnitude is no longer constant
along lines a =constant. This effect can be problematic when interpreting
scalograms. However, it may be avoided by employing progressive wavelets;
see Problem 6.7 and reference [26] for further details.

It is also interesting to note that the actual value of a for which | X (b, a)| is
a maximum (see Figure 6.3) when the signal has the form exp(iwpt) is wavelet
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Fig. 6.6 The scalogram of the Mexican hat wavelet transform of the monochromatic
signal z(t) = sin(¢).

dependent. For instance, for the Mexican hat wavelet this value is

1 /5
a= —\ﬁ (6.18)
Wo 2

a= L(onr Va?+2) (6.19)

o 2(.4.)0

while for Morlet’s wavelet

See Problem 6.6 for more details.

X (bo,ap) dependence on w. Finally, it may be similarly argued that the
Fourier components w of X(w) which influence the value of the CWT at
the point (bg, ag) are determined by the relation

Ymin < Lmax (6.20)

[¢0] [¢0]

We observe that the bandwidth of the frequencies which influence X (b, a)
increases as the scale a decreases.

6.1.2 Discretization of the CWT

The number of instances for which the CWT of a signal may be computed
analytically is obviously very small. In general, the evaluation of the CWT
pair is done at a discrete set of points. In this Section we consider the dis-
cretization of the (b, a)-plane. Using the terminolgy of [26], we consider the
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Fig. 6.7 Top: The sampling grid in the (b, a)-plane corresponding to a = 21/12 g = 1.
Middle: The dyadic sampling grid with a = 2,8 = 1.

restriction of X (b, a) to a collection of fixed values, or voices a;
aj =a’ where a>1 and j€Z (6.21)
Observe that the width of the function ¥((t — b)/a?) is dependent on the

magnitude of of. In fact it is o/ times wider the mother wavelet, i.e.,
t—b

al

supp 1(——) = o’ supp ¥(t)

This fact must be taken into account when discretizing the shift variable b.
The discretized shift size should be proportional to the width of the dilated
wavelet. This may be accomplished by taking

b, = kBa’l where 3> 0 (6.22)
Putting this all together we write the wavelet on the discretized grid as
YL(t) = o Ey(a It — kp)

Then the discretized wavelet coefficient from Equation (6.1) is

X (bg,a;) =279/2 /OO ()27t — k)dt (6.23)

— 00
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Example 6.1. Let o = 2!, The positive integer [ is often referred as the
number of voices per octave. A choice of I = 12 represents a fine sampling of
the (b,a)-plane. See the top of Figure 6.7. The choice of discrete time shift 3
depends heavily on the nature of the data but typical values are between .1
and 1.

Example 6.2. Another importany choice of voice for the discrete grid is a =
2 and 8 = 1. This coarser sampling of the (b,a)-plane produces a dyadic grid.
See the bottom of Figure 6.7. It is also often convenient to display the grid
using the coordinates (b, —ln a).

6.2 THE DISCRETE WAVELET TRANSFORM

Wavelet expansions are local expansions of the form

f@y=Y" > dyi) (6.24)

j=—0o0 k=—00
where the localized little wave functions 9 (2)
Vi) = 292 T ) (6.25)

are generated by the translations and dilations of the mother wavelet % (x) on
the dyadic grid. The integers j, k € Z correspond to the scale and location of
the center of the function, respectively. 4

One manifestation of the local nature of the set of functions {¢](z)} is
their orthogonality across both scale and shift, i.e., they are chosen to satisfy

(v, i,):/ Pl (@)l (v)de = dprr b5 (6.26)

With the wavelet orthogonality property given by equation (6.26) the ex-
pansion, or wavelet, coefficients {d} may be calculated directly by

i~ [ e (6.27)

The direct application of this formula for the computation of the coefficients
{d}} is generally avoided in favor of a much faster recursion scheme called
multiresolution pyramidal decomposition, or Mallat’s algorithm which is de-
rived in general in Section 6.2.2. Note that the coefficient di, = X (b, a;), i.e.,
it is the discretized CWT coefficient from Equation 6.23.

The wavelet expansion is local in the sense that only a few of the expansion
coefficients {d} } contribute to the sum of the series >° , d; ¢ (x) around any
given point x = x,. Note that the localization property of the expansion is
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scale dependent and better time-localization is achieved for coefficients with
small j, while better frequency localization is achieved for coefficients with
large j.

Wavelet analysis on a dyadic grid is a form of multi-resolution analysis
(MRA). The MRA procedes by splitting a function into nested subspaces
of ever descreasing scale. The portion of the function which is removed at
each level is projected into a wavelet subspace. With the MRA perspective,
the construction of wavelets is based on first solving the dilation (or scaling)
equation

$(z) = V2> hep(2x — k) (6.28)

for the scaling function ¢(x) The associated wavelet equation
P(x) = V2 grd(2z — k). (6.29)

then produces the wavelet 9 (z) associated with the MRA based on ¢(z). A
solution to the pair of equations (6.34) and (6.29) is constituted by appropriate
coefficients {gx} and {hj} which determine the functions ¢(z) and ¢(x). The
structure of the MRA determines the relationship between the gy and the hyg
and once the {hy} have been found the {gx} may be found in terms of them
[81]. In addition, the Equation (6.34) is solved by determining appropriate
coefficients {hj}. These may then be used to find the scaling function ¢(z) as
described in Section 6.3. We shall see that the scaling function and associated
wavelet derived from an MRA may or may not actually be determined in
closed form.

Example 6.3. A simple example of a solution to the scaling Equation (6.34)
is provided by the box function boz function

o) — {1 if z € [0, 1), (6.30)

0 otherwise.
with hg = h1 = 1/+/2. In other words,
P(z) = ¢(2z) + ¢(22 — 1)
Example 6.4. The Haar wavelet

1 ifzel0,d),
PYlx) =< -1 ifze(i,1), (6.31)

0 otherwise.

provides a solution to the wavelet Equation (6.29) with go = 1/v/2 and g1 —

—1/2.
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Proposition 6.1. The collection of translations and dilations of the Haar
wavelet satisfy the orthonormality condition

/ 1/);(33) i// (a:)da: == 6kk/6jj/

It is not hard to show this but we need some preliminary definitions.

Definition 6.1. The support of a function f(z), denoted supp|f(z)], is the
closure of the domain on which f(x) # 0.

We shall first show that
supp|y} (z)] = [27k, 27 (k + 1)].

To see this we apply the definition 1/); (z) = 279/%(2 72 — k) which may be
further evaluated as

279/2 279z —ke0,3),
Yi(z) = ¢ —279/2 if270p —k e [1,1),
0 otherwise.

279/ ifxe [2k,2/(k+ 3)),
=272 ifze[2(k+3),2(k+1)),
0 otherwise.

From this we conclude that two Haar wavelets at the same scale don’t
overlap, i.e., 4 4
supp|y] N supp|yy, | = {0}
At two different scales, 7 # j', overlap is clearly possible. We leave it as an
exercise to show that supp[wi] C supp]| i//] where j < 7' and that 1/){;/ (z) =
constant for z € supp[wi]. We can view this result graphically by considering
the two functions

1 % if z € ]0,2),
z .
5(x) = 51/)(1) =1 -5 ifze(24),
0 otherwise.

and
1 ifzell,d),
P(@) =y —1)=< -1 ifzel},?2),

0 otherwise.

“To show that the Haar wavelet forms a basis for L?(R) it remains to show
¢4 are dense in L*(R), i.e., any f € L? can be expressed as the superposition
of the ¥ to arbitrary precision. See [16] for a proof of this fact.



THE DISCRETE WAVELET TRANSFORM 209

Fig. 6.8 Elemenis in different Haar subspaces.

6.2.1 The Multiresolution Property

The multiresolution analysis works by projecting a given function onto a se-
quence of subspaces ..., V;_1,V;, V11, ... of decreasing resolution.
The defining feature of the multiresolution analysis is the multiresolution

property.
Property 6.2.1. A sequence of subspaces
Vi, Vi Vi,
possesses the multiresolution property (MRP) if for all j
J(@) €V f(20) € Vj 1 (6.32)
Example 6.5. The sequence of Haar subspaces V; where

V; = {f(z) € L*(R) : f(z) = constant on z € [27k, 2/(k + 1)), Vk € Z}
(6.33)
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will serve as our primary example. The V; are spanned by piecewise constant
functions at different scales. For example,

Vo = {f(2) € L*(R) : f(z) = constant on z € [k, k + 1),Vk € Z}

The Haar subspaces satisfy Property 6.32. We verify that f(z) € V
f(2z) € V_1. Given

f(z) € Vo — f(z) = constant for z € [k, k+ 1)
Since f(2z) = constant for 2z € [k, k + 1) it follows

kk+1
f(22) = constant for x € [5, %)

therefore f(2z) € V_1.

It is this MRP which permits the construction of a bridge between the
spaces {V;}. The foundation for this bridge is the dilation of the basis for Vq:
given a basis for Vj we immediately have a basis for V;.

Proposition 6.2. Let {¢) : k € Z} be a basis for Vo. Then {¢], - k € Z} is a
basis for V;.

Proof. Since {¢% : k € Z} is a basis for Vp, any ¢q(z) € Vo may be written
q(z) = >, axp(z — k). If f(z) € V; then f(27z) € Vo by the MRP. Thus,

@) =" oxe(z — k)
k

Setting ¢ = 27z we have
F(€) =D (a2 (2797)p(277¢ — k)
i ;
£ =D gl (©)
] ;

Example 6.6. If ¢(x) is the box function, defined by Equation (6.30), then
the translates of ¢(x) are an orthonormal basis for Vj as can be readily seen
graphically.

Another basic property of the scaling spaces in our multiresolution analysis
is nesting.

Property 6.2.2. A sequence of subspaces is said to be nested if

---CVj+2CVj+1CVjCVj,1CVj,2C...
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Example 6.7. The Haar subspaces V, are nested. If f(z) € V; then, by
definition, f(x) =constant for z € [k, k + 1) so clearly f(z) =constant for
x € [%, kgl), thus Vo € V_i. This example demonstrates a fundamental
feature of the MRA. The coarser resolution subspace is a subset of the finer
resolution subspace.

This nesting property satsified by the subspaces is the basis for one of
the fundamental equations of the multiresolution analysis. In particular, if

Vo C V_1 from which we obtain the scaling, or dilation, equation

$(z) = V2> hep(2x — k) (6.34)

In the above equation it is assumed that {¢)} is an o.n. basis for V. Thus,
by the MRP {#, '} is an o.n. basis for V_;. Finally, ¢(z) € Vo C V_;.

As a consequence of the multiresolution Property 6.32, the scaling equation
(6.34) and wavelet equation (6.29) relate not only V5 and V_; but also the
adjacent subspaces V; and V;_;.

Proposition 6.3. Given solutions to Equations (6.84) and (6.29) it follows
that

(i) $1(2) = Ty hn-2kly ()
(id) Yh(@) = Xx gm-2xdh ' (@)

Proof. Substituting x = 277¢ — k into the dilation equation we obtain

G277E —k) = V2 g2 TE — 2k — 1)
l

Letting m = 2k + [ it follows

p277¢ — k) = \/52 Rk $(27 07 VE —m)

Proposition i) follows after multiplying both sides by 279/2. Proposition ii)
may be shown in a similar manner. O

6.2.2 The Multiresolution Analysis

In this Section we demonstrate how the multiresolution property coupled with
the nesting property may be used for efficient computation of the multireso-
lution decomposition and reconstruction of a function. In addition, we shall
see that the multiresolution analysis framework provides a general procedure
for constructing wavelets.

The spaces {V;} form a sequence of approximation spaces. The difference
between the approximation from one level to the next resides in the adjacent
wavelet space W;. In general, the bases for the W} are dictated by the bases
for the V.
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The wavelet subspace W is defined as the orthogonal complement to V; in
‘/jfla i.e.,

Viia=V,0oW; (6.35)
and W; L W7 if j # j'. Then the subspace V; may be written
Vj =V;eW;eW;_4 @"'@Wj+1 (6.36)

where J denotes the coarsest resolution subspace. The remarkable aspect of
this decomposition is the fact that we have the wavelet decomposition

L’(R) =P w;. (6.37)

jez

Example 6.8. In this example it is demonstrated that the Haar wavelet is a
basis for the difference between the Haar subspaces Vy and V_;. Define this
Haar wavelet subspace as Wy where

Vo, =VodWs.

The function (z) which generates the basis for Wy is constructed by the
requirement that

(¢(z),¥(z)) =0
which is satisfied if
¥(z) = ¢(2z) — ¢(2z — 1).
Thus the functions are orthogonal. They also provide the needed direct sum
given the function ¢(2z) which generates a basis for V_; may be decomposed

¢(z) +¥(z)

#(20) — 2

We now define the projection operators P;, @; such that for any f(z) €
L*(R)
ijEVj and ijEWj.

Then we have

Pj1f(z) = Pif(z) + Qi f(2)
P a) = fa) + ¢ (x)
where f7 € V; and s/ € W;. It is common to view P; as a low-pass filter since
it removes the finest scale and ), as a high-pass filter since all but the finest

detail is removed. Specifically, we view s/ as the detail component of f7—1.
As expansions we have

Fla)=Fif(@) =) céi@) (6.38)

kCZ
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where the {c]} are referred to as the scaling coefficients and

(@) = Quf @) = 3 divi () (6.39)

kEZ
where the {di} are referred to as the wavelet coefficients. Next we shall see
how all of these coefficients may be calculated very efliciently using recursion
once we are given the {c};Vk € Z} for some fixed resolution j.

To compute this first level of scaling coefficients we must in general perform
a numerical integration. This is done using the identity

o =(f,¢]) = / f(@)2792p(2 7z — k)dx
Example 6.9. For the Haar wavelet we have

1 ifae 20k 2kt 1)),

0 otherwise.

$2 Iz — k) = {

which gives

] 4 27 (k+1)
e = 273/2/ f(z)d.
2

ik
6.2.3 The Pyramidal Decomposition

Given the scaling coefficients {c,ifl;Vk € Z} for some fixed resolution j we
seek simple expressions for {c]} and {d}}.

Scaling Coefficient Recursion. 'To determine a recursion relation for the scaling
coeflicients first write

¢ = (f,¢1)
by Proposition 6.3 part i) this becomes
- (fa Z hm72k¢j7;nil)
- Z hm72k(fa (bjn:l)

Hence we have the desired recursion

= hmoxch ! (6.40)
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Example 6.10. For the Haar scaling function with hg = h; = 1/\/5 the
recursion formula becomes

N
o = % (6.41)

The coefficients at a given level j are seen to be smoothed versions of the
coefficients at the higher resolution level 7 — 1.

Wavelet Coefficient Recursion. To determine a recursion relation for the wavelet
coeflicients first write

dy = (f,91)
by Proposition 6.3 part ii) this becomes

- (fa ng72kw7j’;1)

= gm-lF, )

Hence we have the desired recursion

A =" gm-owch, ! (6.42)

Example 6.11. For the Haar wavelet go = 1/v/2 and g1 = —1/v/2 Thus the
recursion equation for the wavelet coefficients is given by

i1 -1
& = M (6.43)
V2

We see that for the Haar case that the wavelet coefficients are produced by
differencing the scaling coefficients.

6.2.4 The Pyramidal Reconstruction

Now we derive the recursion relations going the other way. That is, we start
with the function at its coarsest level and add on the detail from each of the
wavelet subspaces. At each level we have

@) = () + & (x)
= i)+ diyl(x)
k

k
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=N el
:<Zci¢i+2di )
k
:Z (ﬁi, +Zdj ¢j 1
k

Now we have all we need to evaluate the inner products above, i.e.,

(01,45 ") th okl s ¢l )
:th72k6mn
:hn72k

Using the same approach it can also be shown that

( Za (bqj;bil) = gn—2k-

Thus we have the general reconstruction formula
=D haokel £ gn-nd, (6.44)
k k

Example 6.12. Haar Multiresolution Analysis. We are now in the position
to compute a wavelet decomposition of a function. We take as an example
the decomposition of the vector f = (9,1,2,0) treated in detail in Strang’s
paper [81]. Our presentation stresses somewhat different points.

So how do we compute the {¢]} and {d]} for this f? We start by viewing
f € V; where the V; are the Haar multiresolution nested subspaces. We
need to arbitrarily specify the size of the smallest scale to start the pyramidal
decomposition algorithm. We will choose dim f = 4 = 277, Thus the finest
resolution required is at the level V_.

Hence we view f as

9 ifzelo,l),
1 if 11
fay =L el
2 1f$€[§,z),
0 ifze[3,1).

We will see that the decomposition in this case will involve the subspaces
V_o =span {2¢(4x — k); k € Z}

V.1 =span {V2¢(2z — k); k € Z}
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Vo =span {¢(z — k);k € Z}

where the coeflicients normalize the functions such that orthonormal.
At the finest resolution, j = —2, the scaling coefficients {c]} are found by
projecting f onto the basis for V_5. le., since P_5f € V_5 we write

Poof(z) =) ¢4, ()
kEZ

where

] 4 29 (k+1)
e = 273/2/ flx)dx
2

7k
From which we have

(ki 1)/
6= (%) 2 / f(@)d.

k/4

Evaluating the integrals
9 1
—2 —2 —2 —2
CO = 5’ Cl = 5’ 02 = 1’ C?) = 0.

Also, 0;2 =0for k <0,k >3.
Now project f onto V_; via P_1 f(z) and onto W_1 via Q_1 f(z). We have

Paf(@)=> ¢ '¢, (@)

k

where using the recursion equation (6.41)

we get

[\
[\

and ¢; ' = c; ' = 0. Therefore,

Poif(z) =cy'¢g (@) + ;' (2)
— 5¢(2z) + $(2z — 1)

The detail is given by

Q-1 f(@) =D d ', (=)
k
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where (z) is the Haar wavelet. Using equation (6.43) at the level j = —2

_ 1 _
dy l= %(Czkz - Czk2+1)~

Hence

Therefore,

Q_1f(x) = dg by ' (z) + dy "y ()

A Lo
7\/§’¢0 +\/§’lp1

We can write these in terms of the box function using the relations

1
Yol = —=(dg” — 7)) =

- (20(42) - 20(4z - 1))

2

&
&l

and
1

-1
101 *\/5

Thus we have the projection onto W_; as

~ -~ *L T —2)— T —
(927 = 957) = 5201z = 2) = 29(4e = 3))

Q-1f(z) = Ap(42) — ¢(4z — 1)) + ($(4z — 2) — ¢(4z — 3)).

which is the portion of f(z) contained in the wavelet subspace at level j = —1.
The projection onto Vy proceeds similarly via the computation of Py f(z).
The scaling coefficients at the level j = 0 are found using

1, _ _
%(Czlj + Czk1+1)

0 _
Ck =
The single non-zero scaling coeflicient is given by

g =—7x(co' +e;)=3

R
V2

and the associated wavelet coeflicient is

Now we have
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and
Qof(z) = 8w8(m)
= (\f(% 2
(\f $(22) — V2¢(2z — 1))
(22) — ¢(22 - 1))
Note, f(z) € V_5 without approximation. In summary,

f(a:) = P,Qf(ﬂﬁ) S V,Q
=P 1f(z)+Q-1f(z)eVaiaW,
= Pof(x) + Qof(x) + Q 1 f(zx) e Voo Wo O W

’§S|M

6.2.5 The Multiresolution Theorem

To this point we have simply assumed that the scaling function ¢(z) and the
associated wavelet 1(z) exist. Now we specify the circumstances under which
this is true.

A multiresolution analysis consists of a sequence of closed subspaces with
the following six properties:

Property 6.2.3. Fach subspace is a scaled replica of the other
J(@) €V, & f(20) € Vj (6.45)
Property 6.2.4. The subspaces are nested
-cWVhcWVicWwCVo CVaC... (6.46)

Property 6.2.5. The closure of the subspaces is identified with all square
integrable functions

v =r1w) (6.47)
jEZ

Property 6.2.6. The intersection of the subspaces contains only zero

NV =1{0) (6.48)

jEZ
Property 6.2.7. The subspace Vy is invariant under integer translations,

flz)eVo— fla—k)eVy Yk e Z. (6.49)
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9
Pof
L[]
Vo,
1
detail at level -1
P_if Q-1f
V1 ] W_,
Rf Qof detail at level 0
Vo Wo

Fig. 6.9 The wavelet decomposition.
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Property 6.2.8. There exists a scaling function ¢(z) s.t. {¢p(xz—k);Vk € Z}
is an o.n. basis in Vj.

The power of a multiresolution analysis is that it expresses a function
f € L*(R) as a limit of successive approximations with increasing resolu-
tion. Furthermore, if the above axioms hold for a sequence {V;} then there is
always an associated wavelet ¥ (z) which acts as the o.n. basis for the W;.

Theorem 6.1. If a sequence of closed subspaces V; of L*(R) satsify Proper-
ties 6.2.3-6.2.8, then there erists an associated wavelet

@) = V23 (1) hon19(22 — n)

which generates bases 1/); (x) for W;. Furthermore,

Piaf=Pf+Y diyl. (6.50)
kEZ

The proof of this theorem may be found, e.g., in [16].
By the completeness property we have

lim P;f = f. (6.51)
j——00

6.3 THE DILATION EQUATION

One of the main approaches for constructing a multiresolution analysis is to
determine the scaling function ¢(x) which satisfies the dilation equation

() = V2> e (2 — k)

kCZ

with appropriate side constraints. For example, a particularly attractive so-
lution ¢(x) will generate an o.n. family directly. It is possible, as we shall
see, to compute solutions which do not have this property. In these cases the
orthonormality must be achieved via an orthogonalization trick. Although the
penalty of applying the orthonormalization procedure is that the resulting o.n.
family no longer has compact support. Any solution ¢(z) associated with a
finite number of non-zero {hy}, k = 0..N will have support on the compact
interval [0, N].

6.3.1 lteration of the Dilation Equation

Consider the algorithm

N
$ (@) = VS gD (22 — k) (6.52)

k=0
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where ¢(9(z) € L', in particular [ ¢ (z) =1.

Proposition 6.4. If the scaling function ¢(x) € L? exists for the coefficients
{hr} then the cascade algorithm will converge to it, i.e.,

¢(x) = lim ™ (x)
n—oo
Support of the Scaling Function. The above iteration algorithm provides a
method to compute the support of the scaling function ¢(z) associated with
a finite length filter.

Proposition 6.5. If the solution to the scaling equation has all zero coeffi-
cients except possibly for {hi} where k =0,... N then supp(¢(z)) = [0, N].

6.3.2 Constraints on the coefficients {hk}

Normalization of ¢(z). By convention we require that the scaling function be
normalized according to

/jo d(z)dz =1 (6.53)

In practice it is sufficient that the right-hand side be non-zero and finite. As
we shall see, this restriction ensures that for a given collection of coefficients
{hi} there is a unique ¢(x). Hence, we may view a solution of the dilation
equation to consist of these coefficients which uniquely determine the scaling
function as long as equation (6.53) holds.

The properties and constraints of the scaling function readily translate into
equations involving the coefficients {hx}. The normalization constraint given
in equation (6.53) provides us with our first example. Integrating the dilation
equation

/(b(a:)da: = ﬂth/qb(%: — k)dz

kCZ

Letting 2’ = 22 — k and substituting equation (6.53) gives
dx’
1= \@Zk:hk /¢($/)7

After substituting equation (6.53) again, we obtain the normalization property
in terms of the filter coefficients

> he=V2 (6.54)

kCZ
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Othogonality Constraint on ¢(x). The orthogonality of the ¢(z — k) gives
another condition that the {hy} must satisfy. Again, given

9(z) = V2 hid(2 — k)
k

the translates may be represented as

oz —m) = \/§th¢(2$ —2m — k).
k
Substituting these equations into the orthogonality condition
[ oot - myd = son
we have
/(b(a:)(b(a: —m)dx = / \/ﬁz hpod (22 — k)\/ﬁz hy @22 — 2m — k') dx
k Py

Ok 2m+k/
=23 hyny D2k
kk’

Thus the orthogonality property of the scaling function is expressed in terms
of the coefficients solving the dilation equation as

> hihk—am = Omo. (6.55)
k

Note that out of all the previous examples, only the Haar scaling function
satisfies the o.n. constraint.

Zero Moment Constraints on ¢(z). In addition, we may apply constraints to
these coefficients gi, Ay which impact the properties of the wavelet expansion.
In fact, the number of vanishing moments p of ¥/(z), i.e.,

/OO a™p(x)dz = 0

— 00

form =0, ..., p—1 determines the order of accuracy of the wavelet expansion.
The Haar wavelet is not appropriate for many applications due to the fact it
is not smooth, and low order of accuracy of its approximations (it has only
one vanishing moment). However, it is an excellent introductory example
and many of the ideas central to wavelet analysis are readily apparent in the
context of the Haar wavelet.

The following theorem from [81] relates how the number of zero moments
of the wavelet basis is formulated as a condition on the {hx}.
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Theorem 6.2. Let ¢(x) and ¥(x) be a scaling and wavelel function which
generate an MRA {V; } as well as the orthogonal subspaces W;. Then

/a:mw(a:)da: ~0

form=20,...,p—1iff
> (=) kb =0
k
The proof of this theorem (see [81]) requires that ¢(z) and (z) decay
faster than O(]z|~™1). In practice this is no problem since ¢(x) and ¥ (z)
have either compact support or decay exponentially.
Furthermore, if the above theorem holds for m =0,1,...,p — 1, then

e 1,z,...,27 ! are spanned by the {¢(z — k)}.

e O(hP) accuracy, i.e.,

17(2) = axp(2z — k)| < C279| 1@
k

o The wavelet coefficients decay as

|| < C2777|| £

6.3.3 Solutions of the Scaling Equation

Example 6.13.

1 1 1
ho = ——, hy— —=, hy— ——
R U L W

and the remaining h; = 0, Vj # {0,1,2}. This scaling function corresponds
to an equilateral triangle of unit height of width 2, centered at z = 1. This
does not directly produce an o.n. family.

Example 6.14.
1 3 1
ho=-, hi=ho=-, h3=-
0 43 1 2 43 3 4
and the remaining h; =0, Vj # {0, 1,2, 3}. This scaling function corresponds
to the quadratic cardinal B-spline. It has support [0, 3] and does not directly

produce an o.n. family.

Example 6.15. Daubechies Compactly Supported Orthonormal Wavelets. The
main drawback of the Haar wavelet is that it is not smooth.

w1V L 3EVE L 3-vE, 1-V3

4\/531*4\/572*4\/533 4\/§

(6.56)
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and the remaining h; = 0, Vj # {0,1, 2,3} The corresponding function ¢(x)
has compact support [0, 3] and produces an o.n. family and compactly sup-
ported wavelets. It is continuous but only weakly differentiable.

Problems

6.1 Derive Equation (6.13).

6.2 Show Proposition (6.6).

6.3 Prove Proposition (6.1.5).

6.4 Find the CWT of z(t) = cos(wot) + 6(t — to).

6.5 Derive the condition given by equation (6.20) which determines the
influence of an interval of frequencies on the value CWT X (b, a) at the point
(bo, ag). Draw this region of influence in the (b, a)-plane.

6.6  This problem concerns computing the maximum value of the magnitude
of X(b,a) for an input signal of the form z(t) = exp(iwot). For simplicity
assume that a,wy > 0

a) Show that for the mexican hat wavelet 1(t) = 21 (1—2) exp(—t2/2)

v
that the value of a corresponding to a peak in the transform is given by
_ 1 /s
a=-—4/3.
wo 2

b) Show that for Morlet’s wavelet 1(t) = — exp(iat — t?/2) that a =

NEZ
= (a+ Va2 +2).

2w0

6.7 A wavelet is said to be progressive if its Fourier transform has the
property that .

Yw)=0 if w<0
Consider the signal x(t) = sin(wot). Show that if the CWT X (b, a) of this

signal is computed using a progressive wavelet then the magnitude of the
CWT | X (b, a)| is independent of b.

6.8 Constant ) analysis. Assume that the Fourier transform of a wavelet
has finite bandwidth which is non-zero on the interval w € [Win, Wmax]. Not-
ing that the width of the window is a function of the scale a of the wavelet
and that the center frequency may be defined as geometric mean of the edges
of the window compute the (constant) Q, or quality factor of the CWT defined

as
center frequency

bandwidth
The wavelet transform is often referred to as constant @ frequency analysis.

6.9 Compute by hand the Haar wavelet decomposition of the vector x” =

(1,7, —3,2) and graphically show the projections onto the scaling and wavelet
subspaces.
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Fig. 6.10 Data corresponding to Equation (6.57). See computer project 6.11.

Computer Projects

6.10 Write a computer code to implement the discretization of the CWT as
described in Section 6.1.2. Compute the approximate CWT by evaluating the
integrals numerically using Simpson’s rule with a step size of h = .01. Find
the CWT of x(t) = sin(5t) + sin(v/26t) and compare with the analytically
calculated result. In this problem you may employ either Morlet’s wavelet or
the mexican hat wavelet. Take a = 27/12,3 = 1 and compute | X (b, a;)| for
enough scales and time steps to develop a good picture of the scalogram.

6.11 Write a computer code to implement the Haar wavelet transform in-
cluding the algorithms for

e Haar pyramidal decomposition
e Haar pyramidal reconstrcution

Compute the 6 level decomposition of the data

2

n = Si n 6.57

fo = sin(5 o) (6.57)

where n = 1,...,1024, 5, is selected from a normal distribution with mean

zero and variance 0.2. Initialize the transform by assuming that f € Vg, i.e.,
the function is constant over unit intervals. Include the following bar plots in
your report:

a) fle v, f2ecW fPci fitecy,
b) S1 EWl,SZ EWZ,SSE W3,54€W4

Be sure that each bar plot has domain [1, 1024].
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