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In this Chapter we continue our study of the K-L procedure and apply it in
detail to a variety of problems, including the study of patterns which evolve
in time, i.e., spatio-temporal data.

In Section 4.1 we develop the continuous version of the KL transform. This
is important for theoretical reasons and will be used later Sections. Section
4.2 develops the KL procedure for both continuous and discrete vector func-
tions. In Section 4.3 we demonstrate how both the continuous and discrete
expansions may be extended to have even and odd symmetry. The appliction
of the methodology to the reduction of dynamical equations is presented in
Section 4.4. In Section 4.5 we present an extension of the KL procedure for
gappy data. This is followed the application of the KL procedure in the pres-
ence of noise in Section 4.6. The last major Section of this comprehensive
Chapter on optimal expansions develops the local KL procedure. Of particu-
lar importance in Section 4.7 is the application of the method to computing
local dimensionalities using the scaling properties of the singular values.

4.1 THE CONTINUOUS KL TRANSFORM

In many cases of importance it is easier to demonstrate theoretical results
concerning the Karhunen-Loeve procedure if the continuous form of the ex-
pansion is used. The derivation now moves to a function space setting, but
remains essentially analogous to the derivation for the discrete case.

Now we assume that the data points {u(* (z)}=, of our ensemble are
functions which reside in the Hilbert space L?(a,b), oo < a < b < 00, i.e., the
space of Lebesgue measurable functions

f:(a,b)y=>C

which are square-integrable

b
| 1r@Pds < oo

with the inner product

b
mwz/fmﬁﬂm (4.1)

and induced norm
171> = (£, )

The presentation here will not be technically exacting in the sense that sets of
measure zero will be ignored. For a more mathematically detailed approach
see [74]. In addition, we will assume that all of our functions are real.

In this infinite dimensional inner product space, we again seek to construct
an optimal basis B with elements {¢() (2)}2, in L*. Our basis should be
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on.,i.e.,
09,09) = [ 99 ()6 (2)da = b

Then, any square-integrable function can be expanded as
& .
u® (g) = Z a{" ¢ (z)
i=1

(m)

where the expansion coeflicients a;” are given by

al") = (u®, () = /oo ult) (2)¢ () da.

The ensemble average is defined as before, namely

1 P
(@) = 5 > uP(2)

If the functions are time dependent, i.e., they are of the form u(x,#) there is
a related time-average defined as

T
(u(z)) = % /0 u(z, £)dt.

If the time-dependent function is sampled discretely in time we may collect
an ensemble as before where

u¥ (z) = u(z,t,).

Often the approximation is made that the ensemble average and the time-
average are equal. If this is true the flow is said to be ergodic [70].

As before, we proceed by defining the first basis function ¢(!)(z) by means
of an optimization criterion. The mean-square projection of the data onto
this function should be a maximum:

((/00 U($)¢(1) (x)dz)?) = maximum
subject to

/ " (60 (@)2da = 1.

—o0

The remaining basis functions may be defined proceeding sequentially

max((¢\), u)?)
o)
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subject to the side constraints
(¢, ¢M) = bjp, for k < j

Using the technique of Lagrange multipliers and the calculus of variations
it can then be shown that the basis functions are solutions to the integral
equation

/cmwmwwzxmw (4.2)
where

Clz,y) = (u(z)u(y)) (4.3)

The type of this integral equation is known as a Fredholm Equation of the 2nd
Kind and its properties fall within the scope of Hilbert-Schmidt theory [29].
This integral equation is seen to be the continuous analogue to the eigenvector
problem for obtaining a best basis in a finite-dimensional setting. Among the
properties of the solutions of this eigenfunction problem are the following:

e The kernel is symmetric, i.e., C(z,y) = C(y, ).

e The eigenvalues are real, countable, and non-negative.

o The total energy is finite, i.e., > Ay < 0.

e The eigenfunctions form an orthonormal basis for the Hilbert space L2.
In addition, we have the continuous analogue to the spectral theorem

Theorem 4.1. Given C(z,y) = (u(z)u(y)) is continuous in z,y then
Clz,y) = > XMo@ (@)9 (v)

where the series converges uniformly and absolutely to C(z,y).

This is known as Mercer’s theorem. We refer the reader to [74, 66] for
further details.

Returning to the data analysis problem, it is possible that the relative
frequency p(® of each member of the ensemble is known, or may be estimated.
If the ensemble consists of P elements, then Pp{® of the elements are indexed
by a. The relative frequency satisfies the conditions

P
P9 >0, > p¥=1
a=1
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The weighted covariance matrix is then defined as

P

Cla,y) = Y _ pu(z)u(y) (4.4)

a=1

This weighted covariance matrix may then used in place of the evenly weighted
ensemble average covariance matrix.

In the next Section we see how the continuous transform allows us to extend
these ideas to vector functions. Furthermore, we show that discrete data made
up of concatenated vectors derived from continuous functions can be dealt
with in a computationally efficient manner.

4.2 VECTOR FUNCTION KL EXPANSIONS

One of the most important applications of the KL expansion is to data consist-
ing of several variables with values defined over a mulit-dimensional domain.
This section deals with the extension of the continuous KL expansion to such
vector functions. The procedure is also extended to the fully discrete setting.

4.2.1 Continuous Vector Functions

Here we address the application of the KL procedure to an ensemble of vector
functions of the form

ul® (x) = (ug") (x),... ,ug‘(‘) )T

where each .

U - R - R
and j is the dimension of the domain. Such ”data sets” are difficult to generate
in practice, but they arise naturally in theoretical settings.

Example 4.1. Consider the fluid flow with scalar flow variables consisting of
the concatenated vector function

u(x, t) = (u(x,t), v(x, t), w(x, 1), e(x, 1), p(x, )"

where x = (x1,%2,23) and u, v, w are the flow velocities in the z;, 2 and z3
directions, respectively; e is the internal energy and p is the fluid density.

To determine a best basis for such vector functions we must extend the
definition of the kernel of the integral equation. The appropriate extension is

C(x,x') = (u(x)u(x’)).

where
Cij(x,x') = (u;(x)u;(x")).
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The kernel C is now referred to as a two-point correlation tensor. If K = 2
we see that

( CH 012 ) _ ( (U1 (x)ul(x’)) (’LL1 (X)’U,Q(XI» )
021 022 (U2 (X)U1 (Xl)> (’U,g (X)’U,g (Xl)>

The integral equation which produces the optimal eigenfunctions is now given
by

/C(x, x)p(x')dx' = Ap(x).

This may be thought of ¢p(x) as being a concatenation of components of
eigenfunctions

d(x) = (¢1(x), P2(x)).
The integral equation can also be written in component form as
2
|3 €l x)a(x)ax’ = ritx)
j=1
fori=1,2.

The Snapshot Method

The snapshot method again helps us reduce the problem for degenerate ker-
nels. We again start with the data-dependent representation

P
X) = Z a,u (x)
p=1
and component-wise
P
=3 auf (x)
p=1

Substituting this into the component integral equations leads to
/Z wi(X)u;(x Za“ W) (x'))dx’ = )\Za,,u(") (x).

Expanding the ensemble average

/ Z 2 (ul ()3 aul (x))dx’ = )\Za,,u(")

u

Rearranging,

Zu(u) Z Z/ () (x')u¥ (x')dx' — (AP)a,] = 0.
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In other words,

> uf” ®)[>_Liua, — APa,] =0

u

where

L, = /Zugy) (x’)ugu) (x')dx'.
J

Hence,

La=)a

where we have used A = \P.

4.2.2 Discrete Vector Functions

As we have already observed, pattern data typically comes not in the form of
continuous functions but rather as discrete vectors. The discussion in Section
3.4 dealt directly with the application of the KL procedure to the case of a
single independent discrete variable. The results of the previous Section apply
to continuous vector functions. We now modify these results so that we can
treat discretely sampled vector data.

Example 4.2. A typical source of discrete multivariable vector data is a nu-
merical simulation of physical problem, such as the motion of a fluid. The
continuous data described in Example 4.1 is now estimated on a 3-dimensional
lattice, or grid. For example, the first component of velocity u(x,t) is com-
puted on u(z1,z2,zs,t) where z; € {1,...,N;}. This data may be concate-
nated into a single column vector as

u(1,1,1)
ut) = ;
U(Nl, N2, N3)

Example 4.3. A color digital image is commonly given as a triplet of red,
r(i,7), green, g(i,7) and blue b(4, j) color values on a two-dimensional lattice.

Concatenating the rows (or columns) of each image, and then the images leads
to the high-dimensional vector

x = (r,g,b)".

Lets consider the application of the above where the continuous vector
function is actually discretized so that

u = (u,uy)”

where
u,us € R ue R,
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Then
C = (uu?)
_ ( (wui) (wuj) )
(upuf) (upuy)

Thus each C;; is an n X n matrix and C is a 2n x 2n matrix. Again we have
the eigenvector problem

Co = \¢

which leads to the snapshot equation, as in the continuous case considered in
the previous Section, i.e.,
La = APa

where L is a Px P matrix and Ly, = 3, (ug") , u§u)), i.e., a vector dot product.

43 SYMMETRIC OPTIMAL EIGENFUNCTIONS

Historically, one of the most important eigenfunction expansion is the contin-
uous Fourier series

flz) = Z ag cos(kz) + by sin(kz) (4.5)
k

which decomposes a periodic function into its even and odd parts. The {a}
coefficients represent the odd portion of f(z) while the {b;} represent the
even. It is easy to show using the orthogonality of the sinusiods that if f(z)
is even, then the {by} are all zero, and if f(z) is odd, then the {ax} are all
zero. This property often simplifies the computations associated with using
the Fourier series expansion.

Recall that a function f(z) is said to be even if f(z) = f(—z) and odd if
f(x) = —f(—=x). In addition, any function may be expressed as the sum of
an even and odd function using the identity

P CLY GO (C)

For example,
. € +e ™ et —e®
=73 T2
See Figure 4.1 for the plots of the individual functions in the decomposition.
The decomposition of a function into even and odd orthogonal components
may be generalized to the form

f@) = arnf® (@) + brfF (@) (4.6)
k
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Fig. 4.1 Left: the function e® and its reflection e™*. Right: The functions on
the left may be decomposed in terms of the even and odd functions fe(z) =
(e +e7°)/2, folx) = (e* —e™%)/2.

where { fe(k) (z)} are even functions, { fék) (z)} are odd functions, and together
they form a basis for the function space in question. Given such a decomposi-
tion it is possible to characterize the symmetry of a pattern or an ensemble of
patterns. For instance, the degree of evenness of an ensemble may be quan-
tified by the sum )", (a?) and degree of oddness as ), (b3). The symmetric
KL procedure will automatically produce these quantities as eigenvalues.

Given the convenience of such a decomposition for characterizing the sym-
metric components of a function (or data vector) it is natural to address the
issue of symmetric optimal eigenfunction (or eigenvector) expansions.

In general, if C(z,y) = (u(z)u(y)) and the optimal eigenfunctions in the
expansion are determined by solving the equation

/ O, 1)d(5)dy = Ad(2) (4.7)

then the eigenfunctions {¢(j)} are neither even nor odd, i.e., the possess no
symmetry. As a consequence, the optimal eigenfunction expansion

u(z) = i a;¢Y ()

does not permit the splitting of the decomposition into even and odd sub-
spaces.

The topic of this Section is to demonstrate how a simple modification to the
KL procedure permits the construction of optimal bases with even and odd
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eigenfunctions. Although the initial setting for the discussion is the continuous
transform, all of the ideas carry over to the discrete case.
We begin by defining the reflection operator

Re(z) = ¢(—2).
Now consider an ensemble of patterns {u()(z)} with u=1,...,P.

Definition 4.1. The symmetry extended ensemble is defined as the union
X = {u¥(2)} U {Ru)(2)}
where p=1,..., P.

The extended ensemble average is then given by
12
= =3 (W ()
{(u(z)) 2PMZI(u (z) + Ru'™ ().

It is interesting to note that the extended ensemble average is an even function.
Ag usual, we form the fluctuating ensemble

¥ (2) = u® (z) — (u(2))

and for simplicity we again immediately drop the tilde notation.
It will be demonstrated that the symmetric optimal eigenfunction expan-
sion is found by solving the symmetrized integral equation

/ C(a,y)dw)dy = A(z) (4.8)

where the symmetrized kernel Cis given by

~

P
Clz,y) = %Z(u(“) (@)u™® (y) + Rul) (2) Rul) (y)). (4.9)

Now we propose to compare the solutions of the symmetrized integral Equa-
tion (4.8) with those of the original eigenfunction problem of Equation (4.7).
In particular, it will be shown that the eigenfunctions of Equation (4.8) are
symmetric, i.e., even and odd functions. In addition, it will be shown that
the solutions of the symmetrized integral equation may be found by solving
associated even and odd integral equations.

The set of eigenfunctions which satisfy a given integral equation also define
an eigenspace, in a manner analogous with the discrete eigenvector problem.
For example, the eigenspace associated with the symmetrized kernel C is the
set of functions

EC)=1{$: / C(z,9)()dy = ()} (4.10)
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The analysis of Equation (4.8) will be facilitated by the introduction of the

even functions W W
7 7
P (z) = ult)(x) +2Ru (z)

and the associated odd functions

ug“) z) = 5
For u = 1,..., P we may view these functions as defining an even ensemble

{u” ()} and an odd ensemble {u$" (z)}.
These ensembles also define kernels. The even kernel

Ce(z,y) = (ue(z)ue(y))

is even in z and y and the odd kernel

Co(2,y) = (uo(2)uo(y))

is odd in z and y.

Proposition 4.1. The symmetrized kernel C may be decomposed into even
and odd components using these kernels, i.e.,

~

C(z,y) = Ce(z,y) + Co(z,y)

This splitting of the kernel into its even and odd components will permit
us to establish that the integral equations which produce the even and odd
eigenfunctions are the even integral equation

/ Co(,9) e (v)dy = A (2) (4.11)

and the odd integral equation

/ Col2, )60 (u)dy = Ao(2) (4.12)

respectively.

Theorem 4.2. If q} is an eigenfunction of the symmetrized kernel C’, i.e.,qAS €
E(C) and ¢(z) = ¢c(z) + ¢o(x) decomposes ¢ into even and odd functions,
then

o ¢.(z) € E(C.)
e $o(z) € E(C,)
In follows that,
E(C) C E(C.) + E(C,) (4.13)
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Proof. By assumption

/ C(z,y)é(y)dy = Ad(z)

Decomposing into the even and odd components gives

/ (Col,y) + Col@:9))(Be () + Bo®))dy = A(Be () + do(a))

After multiplying out and setting the appropriate terms to zero (see Exercise
4.7) we have

/ Co(e,9)e (v)dy + / Col, 1) Do @)dy = Mo () + $o())

Equating the even and odd parts produces Equations (4.11) and (4.12), re-
spectively. O

The next theorem essentially says that the even and odd eigenfunctions
are actually solutions to the symmetrized integral equation. In other words,

~ ~

E(C,) c E(C) and E(C,) C E(C).
Theorem 4.3. If ¢, € E(C,), then ¢, € E(C). Similarly, if ¢, € E(C,),

~

then ¢, € E(C).

Proof. By assumption

/ Co (&) (4)dy = A (2)

So [(Ce(z,y) + Co(z,y))¢e (y)dy = Ade(z) since the additional term is just
zero. Hence it follows

/ C(z,y)pe (y)dy = Ape(2)

The proof for ¢, is analogous. O

From these results we may conclude that any solution ¢, of (4.11) or ¢,
of (4.12) is a solution to (4.8) and that the even and odd eigfunctions span
orthogonal subspaces. Furthermore, it also follows that

~

E(C.) + E(C,) € E(C)

Thus, by combining the statements of theorems 4.13 and 4.13, we conclude
that .
E(Ce) + E(Co) = E(C)

It is also easy to show that the even and odd kernels produce orthogonal
eigenfunctions.
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Proposition 4.2. The even and odd eigenfunctions are orthgonal, i.e.,
E(C.) L E(Co)

The proof of this is left for the exercises.
In other words E(C), the eigenspace determined by equation (4.8) can be
expressed as the direct sum of E(C,) and E(C,); i.e.,

E(é) = E(CE)G‘BE(CO)'

Thus to determine the even eigenfunctions {¢A$e (y)}, and the odd eigenfunc-
tions {¢o(y)} of C, we may solve the "smaller” problems given by Equations
(4.11) and (4.12).

This theorem shows that the eigenfunctions of the symmetrized integral
Equation (4.8) are actually all either even or odd.

Theorem 4.4. Assume that all eigenvalues of the symmetrized integral equa-
tion are distinct. If ¢ is an eigenfunction of C, then either ¢ ¢e, or ¢ ¢o

Proof. Since ¢A$ is an eigenvector of C' and ¢3 = ¢A$e + ¢30 it follows
[ @)@+ by = X3.(2) + 3u(2) (414)

Also, by theorems 4.2 and 4.3, these eigenfunctions satisfy [ Cl(z,y)de(y)dy =
Aede(z) and f C(z,y)o(y)dy = Aodo(z), or, after adding these equations
together,

[ C@n6.w) + bowdy = Xela) + Aodals)  (@15)
Equating the right-hand sides of Equations (4.15) and (4.14) leads to

)‘(¢e(x) + ¢0(.’IJ)) = )\eée(x) + )\oéo(m’)
or )
(A = Ae)de () + (Ao = Mo (2) = 0

But ¢.(z) and ¢,(z) are independent so A = A, = A,. But this is a contra-
diction, since the eigenvalues are distinct by assumption. The only remaining
possibilities are
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Fig. 4.2 The eigenvectors of a mean-subtracted ensemble of 10 faces.

4.3.1 Symmetric Optimal Eigenvectors

Although the continuous KL transform was a useful setting to derive the
symmetric properties of the eigenfunctions for a symmetry extended data
set, the discrete formulation is used in practical computations. This section
outlines the discrete procedure which is analogous to the continuous KL of
the previous section.

Definition 4.2. A vector x € RY is said to be even if

Ti = TN—i+1
and odd if

Ti= —TN-i+1
fori=1,...,N.

Following the notation of the previous section we define the reflection of a
vector about its midpoint as

(Bx); = TN—i+1 (4.16)

Example 4.4. A vector of length 4 may be said to be even if it has the form
(a,b,b,a) and odd if it has the form (a, b, —b, —a). All vectors of length 4 may
be decomposed into the sum of an even and odd vector using

1 + 24 T1 — 4
1 o + T3 1 To — I3
== - 4.1
X 2 T2 + 3 +2 —Ty + I3 (4.17)

1 + 24 —21 + 24
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Following the previous section, the symmetric eigenvectors are computed
from the symmetrized eigenvector problem

Cd = Ao (4.18)
where
O (uu”) + (RuRuT)
N 2
There are twice as many patterns in this ensemble, so for rank deficient prob-

lems it is computationally less expensive to solve the associated even and odd
eigenvector problems

Cep = A,
and

Cotpp = AP,

where C, and C, are defined as before. Again, the even and odd patterns are

found using
x + Rx x — Rx

Xe = — Xo =~
where the action of R is defined by Equation (4.16).

The Snapshot Method

When the matrices C, and C, are singular it is again useful to employ the
Snapshot Method. Specifically, representing the even and odd eigenvectors in
terms of the even and odd data we have

¢o = Zbuxg“) ? ¢e = Zauxg“)
19 19

yields the two reduced problems
Lealw) — )\a('f),

Lob® = Ab¥)

where Lf, = x,x#) and L, = x), %Y. Now there are two P x P
eigenvector problems rather than a single 2P x 2P problem which arises if
we solve Equation (4.18) via the Snapshot method. Again, the resolution
of the patterns is a factor only in the computation of the dot products and
the required memory. As a result, very high-resoultion images may present a,
practical problem even if the eigenvector problems can be solved.

Example 4.5. The Symmetric Rogues Gallery Problem. The representation
of digital images in Section 3.6.1 may now be extended to include symmetry.
As an example, we revisit the Rogues Gallery problem and compute the even
and odd eigenpictures. The result of computing the eigenpictures of the even
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Fig. 4.3 Top: the even eigenvectors. Bottom: the odd eigenvectors.
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ensemble is shown at the top of Figure 4.3; as expected, they are all even
about the midline. The bottom of Figure 4.3 shows the result of computing
the eigenpictures of the odd ensemble. Again, as expected, they are odd about
the midline. For purposes of comparison the eigenpictures for the unextended
ensemble are shown in Figure 4.2. See [45] for further details.

Although the presentation here considered only one type of symmetry, i.e.,
reflections, the ideas extend to other discrete and continuous symmetries. For
several examples within the context of geometries of boundaries of fluid flows
see [71]. For a mathematical treatment using representation theory see 7.

4.4 LOW-DIMENSIONAL DYNAMICAL EQUATIONS

The modeling of complex phenomena such as atmospheric dynamics or ocean
currents typically begins with systems of nonlinear partial differential equa-
tions. While the mathematical setting for such problems has an infinite num-
ber of dimensions, the actual computer implementation is always of finite
dimension. In many instances this gap is not as wide as it first appears. For
example, consider the Kuramoto-Sivashinsky equation (KS)

e+ Wgags + 0ltizs + 5 (0)) =0 (4.19)
where the subscripts denote partial differentiation, e.g., u, = du/8z. The
KS equation is known, under certain conditions, to actually have solutions of
finite dimension despite the infinite dimensional formulation [14]. In general,
methods which lead to dimension estimates for solutions to PDEs are not con-
structive, i.e., they provide now means for developing model equations which
reflect true dimension of the dynamics. The KL procedure, combined with
standard techniques from numerical analysis, is a natural candidate for trans-
forming infinite dimensional PDEs to systems of optimally low dimension.
This idea was initially investigated in the 1950’s in the context of numerical
weather prediction [69]. In the interim this approach has received consid-
erable attention; for a detailed theoretical treatment in the context of the
Navier-Stokes equations see [70, 71, 72] and for a review of this area see [7].

Now we develop some of the basic ideas for building low-dimensional dy-
namical systems from partial differential equations. To begin, the standard
Fourier-Galerkin is considered. This is followed by a discussion of a general
projection procedure which employs the optimal KL basis. Lastly, a Sobolev,
or derivative based norm especially suited for approximations of a dynamical
nature is presented as an alternative to the usual mean-square error criterion.

4.4.1 The Galerkin Projection

The Galerkin Projection is a well-known method for generating a system of
ordinary differential equations (ODEs) from a partial differential equation
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(PDE) [14, 13]. For example, consider the PDE

ou

where A is a nonlinear partial differential operator. Given a basis {1(™} for
the solutions to the PDE it follows

o0

u@ 1) = 3 an(B) (2). (4.20)

n=1

The solution is then approximated by taking an D-term truncation of the
solution

D

up(@,t) = Y an(t)y™ (). (4.21)

n=1
Projecting the truncated solutions onto our basis as

@, 22— Nup)) =0 4.22)

produces a system of amplitude equations

dak

ﬁ:Fk(a’h"'aaD)

Before addressing the question of how to minimize D, we consider the Galerkin
procedure using a sinusoidal basis.

4.4.2 The Fourier-Galerkin Projection

The Fourier modes {e‘"®} provide a useful basis for periodic phenomena.
Periodic functions can be decomposed via the Fourier expansion

[e9)
u(z,t) = Z an(t)e™®. (4.23)
-0
The Fourier coeflicients a,, are found via the orthogonality relationship
271- . ..
/ ehTe=T = 2n 8y, (4.24)
0

Substituting the Fourier expansion for u(z,t) into the KS equation produces

o0 o0

D (an(t) + (4" — an®)an(t)e™ — %( > nan(t)e™)? =0 (4.25)

n=—oo n=—oo
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Projecting this equation via Equation (4.22) onto the first D Fourier modes
using the orthogonality condition results in

N
a(t) = (ad? — 4)ay(t) + % Z (I — n)naj_pany (4.26)
n=—N+lI

where —N < | < N. Given u(z,t) is a real-valued function these equations
may be simplified by making use of the reality condition a; = @—_;. Note also
that the ag term decouples from the system. The resulting coupled system is
then

o Lt N-1
ap =P(a— 4)a; + — 5 Z (I — n)naj_nay, — anzl + n)nana, (4.27)
where 2 <[ <N —1and
N
o =(a—4)a —«a Z(l — N)NTy—16n, (4.28)
n=2
and
any = N*(a —4N%)ay + = Z — N)NAN_nGn, (4.29)

4.4.3 KL-Galerkin

The Fourier basis is a general basis for periodic functions. However, it may
not provide the minimal number of equations D for a given partial differential
equation. For the KS equation, the Fourier basis is in fact an optimal basis
for parameter values a for which the solutions to the KS equation are trans-
lationally invariant (u(z,t) is a solution implies u(z + 8, ) is also a solution).
For values of a for which the solutions are not translationally invariant we
may sensibly look for an optimal basis consisting of KL eigenvectors {¢(™ (z)}
which are not sinusoidal.

The derivation of the system of ODEs based on the KL basis is directly
analogous to the Fourier Galerkin projection. The new decomposition takes
the form

u(z,t) = Y an(t)e™ (z). (4.30)
n=1
Thus
w=-13 an(¢®,¢{%,) —a Z an(9®,60) - 5 ;w(” , 760 ) aman.

(4.31)
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Now representing the KL eigenfunctions themselves in terms of their Fourier
coefficients, i.e., letting

N
¢ = Y alle (4.32)
k=—N

then an M term KL expansion takes the form

M M
a = Z QnOn + Z DimnGmGn, (433)
n=1 m,n=1
where
N
an= Y (—4k" - K)o al” (4.34)
k=—N
and
N
Bk =—N

with the restriction that | k + %' |[< N.

Example 4.6. The KS equation with a = 84.25. This procedure was carried
out for the KS equation at a value of a for which the solutions were not
translationally invariant. Three modes, shown in Figure 4.4, dominate the
energy in the covariance matrix spectrum. The

A 3-dimensional simulation of the KS equation based on these modes is
given below. Note that the truncated system requires a cubic stablizing term.
For a comparison of the original solution with the reduced solution see Figure
4.5. Further details may be found in [43].
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Fig. 4.4 The eigenvectors of the KS equation for o = 84.

@ = (4.0001a — 64.0110)a; + (0.0395 — 0.0021a)as
+(0.0013a — 0.0256)as + (0.0003a7 + 0.0039a;as
+0.0109a;a3 — 0.2363a3 — 0.3986a2a3 + 0.2363a3)
—2.3a3

a; = (0.0395— 0.0021a)a; + (1.0036a — 4.1637)as
+(0.0001c — 0.0052)as + (0.0010a% + 1.1142a1 a2
+0.9644a1a3 + 0.0024a3 — 0.0031azas + 0.0034a3)
—2.3a3

a3 = (0.0013a — 0.0256)a; + (0.0001a — 0.0052)as
+(1.0038c — 4.1734)as + o (0.0016a7 + 0.9595a1 a2
—1.1142a,a3 — 0.0051a; — 0.0020aza3 + 0.0012a3)
—2.3a}

4.4.4 A Weighted Sobolev Norm

The KL procedure was developed as an optimal procedure for empirically
representing point values of a given data set in the mean-square sense. Note,
however, that the numerical simulation of a PDE requires more than the
optimal approximation of the data u(z,t). It is also necessary to approximate
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Fig. 4.5 Left: original 20-dimensional simulation. Right: reduced 3-dimensional sim-
ulation.

the spatial partial derivates of u(z,t) at every time step. For instance, in the
Kuramoto-Sivashinsky (KS) equation the solutions are highly sensitive to the
dissipative term wu,;,, and the degree to which this is accurately approximated
will greatly affect the results of the numerical simulation.

We observe that a basis which optimally represents u(z,t) will not, in
general, be optimal for the spatial derivatives g, Ugg, Ugrz, Ugrze- Lhe Opti-
mization criterion may be shifted to the derivatives employing the modified
variational principle
ik 1> +ws || uss — ugy II* +.-.)

(4.36)

€ =min(wy || v — u +wy || ug — ul

where the w; are adjustable non-negative weights. Alternatively, we choose
to maximize

A1 = (wo (oM, u)? + w1 (0N, ug)? + wo (6, ugs)? +...) (4.37)
subject to (¢, (1)) = 1. The remaining eigenfunctions may be found by

proceeding inductively as before.
Now the variational equation leads to the eigenfunction problem

[ Kst@ oy = 26(a) (4.38)
where we have the modified kernel

Ko={(wou®u+witty ® Uy + Wallyy @ Ugy +...) (4.39)
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and ® denotes an outer product.

How many derivatives we choose to include in the variational equation will
depend on the form of the operator and on whether the resulting integral
equation has solutions. Let us define the generalized Sobolev K-L kernel K é] )
of order j

j
K (@) =Y wi(w® @ u®) (4.40)
k=0

where u(®) denotes the kth partial derivative. Details of the implementation
of this optimality criterion are provided in [42].

4.4.5 Further Discussion

The procedure outlined above for constructing low-dimensional systems from
infinite dimensional PDEs deserves further discussion. As a general approach
it has enormous potential. It is worth addressing some of the obvious criti-
cisms of this approach.

In order to construct the empirical basis the KL procedure requires
data representing solutions. In essence, you have to first compute the
solution to provide a method for computing the solution.

This remark is certainly true, the KL basis is empirical and requires that data
associated with the solution be known. The strength of the KL procedure
is exactly its ability to exploit the known geometry of phase space. The
drawback of the method, i.e., that solution sets be available is mitigated by
several factors. In many instances, detailed numerical solutions are in fact
available. Alternatively, experimental data sets may be available for basing
the computation of the covariance matrix.

The reduced KL model is of limited validity in parameter space.

A model built using the KL eigenvectors computed using data collected at
a fixed parameter value ap may indeed have a limited range of validity a €
(o — a, ap + a). This depends on the manner in which the phase space of the
PDE changes with its parameter. In some instances the KL basis is actually
quite robust to changes in parameter; see 77 for an example. This situtation is
a fact of life for this approached to reduced systems. It depends on having an
accurate representation for the geometry of the phase space of the solutions. If
the geometry is not accurate then more data needs to be collected. Adaptive
bases methods appear to be a very promising way around this problem.

The KL procedure is linear and for this reason may not be able to
determine an optimal system of equations.

The KL procedure is limited by the fact that the transformation is re-
stricted to by orthogonal. Situations often arise where there is no rotation of
phase space to reveal the low-dimensional dynamics. For example, consider
the instance where the solutions for a particular parameter in the PDE lie on
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a closed curve in a high-dimensional space. If the solution has its energy dis-
tributed in every direction then the KL procedure will not be able to reduce
the system at all. However, geometrically we expect a 2-dimensional solution
should be sufficient. This is due to the fact that the procedures described
here produce best bases which encapsulate the appropriate regions of phase
space for constructing simulations of reduced dimension. An alternative is to
parameterize the solutions. See Chapter 9 for a discussion of these methods.

4.5 IMPLEMENTATION WITH MISSING DATA

Now we turn to the problem of using the KL procedure on data sets which have
gaps, or missing components. The algorithm presented here is due to Everson
and Sirovich [19]. Our development follows [19], although here we simplify
the setting of the presentation using only discrete vector spaces, rather than
function spaces. We distinguish this extension of the KL procedure for gappy
data, using the terminology of [19], from the case of noisy data which is
developed in the next section.

4.5.1 Estimating Missing Data

Let x € RY be a vector which possesses a reduced expansion in terms of the
KL basis as

D
X~ Xp = E a,u™
n=1

It follows that only D points of information are required to reproduce the
original vector. Consider now an incomplete, or gappy, copy X of the original
vector x. This may be expressed

5= mi=l (4.41)
0 m; = 0

where the vector m € RY is in indicator vector, or mask, which identifies the
indices of the missing data. We will also write this incomplete vector as

X=m.Xx

where the 7’th component of the product notation (m.x); = m;z; represents
pointwise multiplication.

Given a vector x which is an element of an ensemble of intrinsically low-
dimension, it may be possible to replace, or at least estimate, the missing
entries. If the ambient dimension in which the vector resides is large, specif-
ically if D << N, it is plausible that this repair may be possible even if a
significant number of the entries of x are missing. The repaired vector Xp is
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defined as an approximation to x as
D
X~ %p=» apu™ (4.42)
=1

Note that, by virtue of the eigenvectors {u(”)} being fully intact, the recon-
struction Xp has no missing entries.
Now the problem is to find the {d@,} such that

E =% - %ol (4.43)

is a minimum where the norm is defined only on the data which is not missing,
ie.,
2 _ _
I%]| @ = (%, X)m = (m.x, m.x)

With this norm it follows that the coefficients {d,} are estimated based on
the available data only. Using this definition of the (gappy) inner product

D D
=(x-— Z dnpu™ % — Z Gpul™)

D

= (%, %)m Za )+ (3 dpu® Za u™
gzl m=1
= ”X”2 _QZan X ll( ) Z (m) u(n))

m,n=1

Note that the eigenvectors {u(m)} are no longer orthogonal on the gappy inner
product.
Differentiating the error term E w.r.t. the k’th coefficient gives

OF D
= X E = m k _
B =0 - 2(%,u' ))m+2mE:1am(u( ) u®), =0

from which it follows that
D
Z am (u(m), u(k))m = (%, u(k))m

This may be rewritten in the form of a linear system
Ma=f (4.44)

where
M;; = (u(l) u(]))

and .
fi - (ia u(l))m
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4.5.2 Estimating a KL Basis with Missing Data

In the previous section we examined the question of estimating data missing
from an observation. The procedure required a KL basis derived from a train-
ing set with no gaps. These ideas may now be applied to constructing a KL
basis where only incomplete data sets are available. The procedure presented
here was proposed in [19]. It is based on an iterative process which succes-
sively repairs the gappy data and improves the estimate for the associated KL
basis.

The data set may be modeled by associating with each pattern, a mask
m(#) of indices indicating which data is available and which components are
missing. Each pattern with incomplete data may now be written

%W — @ x®)

The ensemble average of the incomplete patterns is now

where
P
p=1

Once this ensemble average has been determined from the gappy data, the
first stage of the ensemble repair procedure may be executed. This repair is
done by replacing the missing data with the pointwise mean of the existing
data. Specifically, the first stage of the repair process is then

~(N) (N) =1
gy =47 T (4.45)
((®): m# =0

The improved ensemble {x*)(0)} may be used to construct the first estimate
of, or initialize, the KL basis, which we denote

{uP O},

Now, given an initial estimate for the KL basis vectors, an improved approx-
imation may be obtined using the procedure of the previous section.

Specifically, given the gappy pattern vector x#) = m®Wx®) we may im-
prove our estimate of x given by Equation (4.45) by using the first estimate
of the KL basis. The improved estimate may be written

D
x5 (1) =Y a® (1)u™(0)

m=1
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where the {a#j’ (1)} are the solutions to
MW (0)5(;») (1) = £l (0)

where . .
MP(0) = D (0), 0D (0))mim

and
£89(0) = (& (0), u® (0)) e

The second iteration of the repair procedure uses the improved estimate
for the gappy data ensemble

~(1) (m) _
s (1) =% T (4.46)
(x5'1); m™ =0

In summary, a set of KL basis vectors may be estimated from gappy data
as follows:

KL Procedure for Gappy Data
1. Initialize the missing data with the ensemble average.

2. Using the completed data compute the first iteration of the KL
basis.

3. Re-estimate the ensemble using the gappy approximation from the KL basis.

4. Re-compute the KL basis.

The last two steps of this process are repeated until the KL basis is deemed
to have converged in a satisfactory manner. In particular, we expect the the
sequence of repairs to approach the actual data

x® () — x(®

and consequently, the sequence of estimated eigenvectors to approach the
actual eigenvectors . .
u®(n) - ul®.

It is natural to end the iteration when the updates provide little change and
it is concluded that no further progress is being made.

4.6 APPLICATION TO NOISY DATA

Now we turn to the case where the patterns have added noise, i.e.,

x#) = g 4

In the general situation, the signal s(#) is not observable, but the signal with
the added noise component n‘#) is. A computation of the best basis in this
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situation, using the ensemble averaged covariance matrix Cx = (xx”) does
not, in general, provide a good separation of the signal and the noise.

The simplest case is that of white noise which is assumed to have zero
mean, be uncorrelated with the signal and have a covariance matrix of the
form al where « is the variance of the noise and I is the identity matrix. In

this instance, the covariance matrix of the signal may be decomposed

Cx = {(s + n)(s + n)T)
= (ss") + (nn”)

=Cs+al

where Cs = (ss”'). The eigenvectors of Cy are the same as Cs and the eigen-
values are all shifted upwards by the variance of the noise a, leaving the
differences of the eigenvalues preserved [22].

The general situtation is more complicated and the noise does indeed
change the eigenvectors. Now the signal and noise may be separated in an
optimal sense by defining an appropriate variational principle. To start, write
down expansions for the noise

a® — Z b{H (@)

2

and the observed variable

x — Z ag“)df(i)

Following [24], a basis for separating the signal from the noise may be obtained
by determining (ideally) an o.n. basis {t)(¥} such that

(b
(a7)

= maximum

POy

for each direction i.

From our experience with the derivations in the previous sections it is
natural to consider first maximizing

b?)

Dy = 1)

) = 723

Before differentiating, we rewrite D as

Observe the appearance of the ensemble averaged noise covariance matrix
which we write Cy = (nnT), in addition to the usual matrix Cyx = (xxT).
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Fig. 4.6 Left column top to bottom: The eigenvectors corresponding to the largest
eigenvalues of Cx are represented by solid lines and the eigenvectors corresponding to
the smallest eigenvalues of Cz'Cq are represented by dotted lines. Right column top
to bottom: The eigenvectors corresponding to the smallest eigenvalues of Cx and the
largest eigenvalues of Cg!Ch.

Now we seek to maximize

CARNeRTIO)

D('l,b(l)) = (¢(1),Cx¢(1))

(4.47)
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Note that it is not necessary to require the auxiliary condition that (1/1(1) , ¢(1)) =
1 since D (1)) is now bounded. Differentiating Equation 4.47 w.r.t. %1 gives

oD
3¢(1)

This can be rewritten as

= 20 (W, Cxyp™) — 20V (™M, Cuyp™) =0 (4.48)

CapV = uCryp™ (4.49)
where
(¥, Capp™)
W, CeypV)
This is a symmetric definite generalized eigenproblem, see [7].
Compare with the standard eigenvector problem

B¢(1) — )\,(/J(l)

If we take B = C;1Cy, we need to verify that the p is in fact an eigenvalue of
B. We will show that if

/J,:

C Cup®) = ApD)

then A has the form given for y. This is readily seen to be true by projecting
the eigenvector equation onto ¢(1), ie.,

(D, Cayp™) = A, CxypV)

from which we see that A has exactly the desired form.

The remaining optimal basis vectors may found using a similiar approach.
Note, however, that in this case the eigenvector problem is no longer symmet-
ricin general. Using this approach, the ordering of the eigenvectors is reversed.
The noise resides in the largest eigenvalues while the signal is spanned by the
basis vectors with the smallest eigenvalues.

To successfully implement this method it is necessary to estimate the en-
semble averaged covariance matrix of the noise Cy,. Note that although, fol-
lowing [24], the method was introduced in the context of eliminating noise, it
is useful for separating signals in general when the ensemble averaged covari-
ance matrices for each component are available.

Example 4.7. Fourier modes corrupted with known moise. As a simple ex-
ample of the procedure we generate data according to

N
1
u(z,t) = —sink(t — k) + n(z,t
(0,0 = 3 g sink(e = B) + n(o.1)
where 7(z,t) consists of Gaussian noise with mean zero and variance four.
Taking N, = 20 and N; = 5000 the data were discretized according to z; =
2mi/Ng, i =1,...,Ny and t; = 2nj /Ny, j = 1,...,N;. In addition N was
taken as 40. In the limit, as N; — oo, the matrices Cy, and C;! approach the
identity. Hence, given infinite samples, this approach would be the same as
standard KL.
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4.7 THE LOCAL KARHUNEN-LOEVE EXPANSION

The Karhunen-Loéve procedure described in the previous sections provides
a global representation for a data set. It is not unusual, however, for data
to reside on a nonlinear surface, or manifold, which appears locally to pos-
sess a coordinate system of reduced dimension. In this setting, the optimal
global basis may require an encapsulating dimension which far exceeds the
local, or topological dimension of the data. In this section we discuss a local
representation which overcomes this deficiency.
The main points to be addressed in this section are how

¢ a data surface may be locally approximated by a tangent space

¢ the tangent space may be computed via a local KL procedure

¢ the local dimension may be estimated using a scaling argument

¢ the procedure may be automated using a local whitening transformation

In addition, we shall see in Chapter 9 Section 9.11 that data may be locally
parameterized by the coordinates of the local basis.

4.7.1 Global KL Procedure on Closed Curves

Before presenting a general approach for computing local bases it will be useful
to examine the application of the KL procedure to several sample problems.
The problems reveal a pattern which may be exploited to develop an algo-
rithm.

Example 4.8. Figenvectors of a Circle. To begin, we consider the calcula-
tion of the KL eigenvectors for data on the unit circle S'. The circle may be
parameterized by the angle 6

(z(8),y(8) = (cosb,sin8)

Given any point is uniquely determined by a single parameter, the set of points
is one-dimensional. However, given the symmetry of the circle, we anticipate
that a global KL basis will be two-dimensional.

Since the data is defined continuously on the circle, we now employ the
integral definition of the ensemble average

(z) = %/0 7Tx(t9)dt9

It is easily verified that the mean value on the circle is the origin since (x) =
(y) = 0. The ensemble averaged covariance matrix C is then given by

o= (& @)
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Global KL dimension is two

Local ball has dimension one

Fig. 4.7 The circle appears to be two-dimensional globally. In a local ball, the KL
procedure identifies data on the circle as one-dimensional.

The components of the matrix are readily computed as

1 1
2y & 2 = —
(z*) = 277/0 cos” 0do 5

:277

27
(y?) i/ sin® 0df = 1,
0 2
1 27 .
(zy) = %/0 cosfsin8df = 0.

Thus, we see that the matrix C is already diagonalized from which we conclude
the standard coordinate system provides uncorrelated axes. Thus, with

)
(2 2

we see that all vectors in R? are eigenvectors and any orthogonal pair qual-
ifies as an optimal KL basis. In other words, every coordinate system has
uncorrelated data.

Example 4.9. Figenvectors of an Ellipse. Now we compute the optimal
eigenvectors and the associated eigenvalues for the family of ellipses rotated
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in the plane by an angle a. The parameterized equations are given as

z(6) = acosacosf — bsinasind

y(#) = asinacosf + beosasinf

It is again easy to verify that (z) = (y) = 0. The remaining components of
the covariance matrix are
1 27
(z?) = o (acosacos@ — bsin asin§)?dl
T Jo

1
=3 (a® cos® a + b* sin” @)
) 1 27 . . 9
(y ):2— (asinacosf + bcosasin6)“dd
T Jo
1
=3 (a® sin® o + b? cos® a)
1 27

(zy) = o (acosacos@ — bsin asin 8)(a sin a cos# + b cos a sin 8)do
T Jo

= (a® — b*) sin(2a)

We may facilitate our computations by rotating coordinates in a man-
ner whcih diagonalizes the covariance. Since we anticipate that the eigen-
vectors will in fact be scalar multiples of w; = (cosa,sina)? and wy =
(—sina,cos a)?, we attempt to diagonalize C by computing C' = QCQ”

where
QT - cosa —sina
T\ sina cos

is the matrix which has columns w1, ws. In fact, this transformation is equiv-
alent to rotating the axes of the ellipse by the angle —a to align them with
the standard basis. Carrying out this transformation we find C’ is given as

¢'= ( a20/2 b20/2 )

Hence A\; = a?/2 contains 100 X a?/(a® + b?) percent of the energy. We see
that for a = b, i.e., the case of the circle, we obtain the same result as before.

4.7.2 The Local Approach

In the previous section we saw two examples of analytically defined curves for
which it was possible to compute local KL eigenvectors and eigenvalues. These
curves appear locally like straight lines (as the local region shrinks to radius
zero). It is a feature of k-dimensional manifolds that the appear locally like
R* regardless of the dimension of the ambient space. The local approach to
be described here exploits the locally Euclidean nature of data on a manifold.
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Before exploring k dimensional manifolds we examine one-dimensional man-
ifolds, i.e., smooth curves, and outline a local KL procedure for representing
these curves.

We begin by returning to our circle example. We propose to construct a
local basis about the point (cos a, sin ). Now the data is parameterized as

(z,y) = (cos@ — cosa, sin @ — sin a).

The components of the ensemble averaged covariance matrix are given by

2 2r fote 2
Ci1 = (= >:2_e/ (cos@ — cosa)“df

a—e€

2 o2 [ote ) 9
Coo = (y >:2_e/ (sin @ — sin a)*df

a—e

2 [Fe . .
Ci2 = (zy) = 5 / (cos @ — cos a)(sin @ — sin a)df

—€

where we are integrating locally over an arc of length 2¢/27. Note that the
data is mean subtraced only in the limit as e — oo since for € > 0 the actual
mean of the data does not lie on the circle. These integrals evaluate to

1
Ci1 = E(e— §Sin2€+ (2€ + sin 2e — 4 sin€) cos” a)
€

1
Coo = E(3e+ isin26—4sine— (2€ + sin 2¢ — 4sin €) cos” a)
€

1
012 = 021 = E(§ sin 2e — 2811164‘6)
€

Since we anticipate that the eigenvectors will be scalar multiples of w; =
(sina, —cosa)? and wy = (cosa,sina)?, we may attempt to diagonalize C
by computing

C'=QeCcqQT

where

QT—( sina cosa)

—cosa sina
Carrying out this transformation we find C” is given as

C'(e) = ( 7(e— 5sin2e) 0 )

0 T (3¢ + § sin2e — 4sine)

Since C’(e) is diagonal, we conclude that the columns of QT are in fact
the KL eigenvectors with the associated eigenvalues being C]; and Cl,. It is
interesting to compare the growth of these eigenvalues with the local region
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o+ €
A .
) (cos a, sin )
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/ e
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Fig. 4.8 Set-up for computing the KL basis locally on the circle. The data is taken
to be the arc which extends froma —e <0< a+e€

the size of which is a function of e. Computing the Taylor expansions of the
eigenvalues we obtain
) o 2w o5 27w

1L =01 = € - E64 + O(%)

Chy =03 = ge‘l - 81466 + O(e®)
where we consider the singular values o7 = ); which are the square roots of
the eigenvalues of C' 1.

Notice that the first singular value, the one corresponding to the eigenvector
tangent to the data, grows linearly with €. The second singular value, however,
grows at a rate proportional to €2. We shall see this linear growth behavior is
typical of the singular values corresponding to the eigenvectors that represesnt
a flat approximation to the data, i.e., the tangent space.

It is interesting to compare the Taylor series expansion about the point

f(a) = (fi(a), fa(a)) = (cosa, sin a).

2
fila+¢€) =cosa —esina — 6Ecosa+0(e3)

'We say that f(z) = O(g(z)) as z — z, if there exist positive constants K,d such that
|f| < K|g| whenever 0 < |z — zo| < 8.
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2
fola+€) =sina —ecosa — %sina+0(e3)

In vector notation,

. 2 _
flate) = % Jye ~3Y )42 [ T ) L 0(S)
sin cosa 2 —sina

Writing w; = (—sina,cosa)? and wy = (—cosa, —sina)” we have as the

representation in the neigborhood of a
of = ew; + 2wy + O(€%).

These are exactly the eigenvectors computed above and that the coefficients
scale as the singular values. However, in general, the Taylor series approxi-
mation will not coincide with the KL expansion.

Example 4.10. An Ezample in R?. Consider the quadratic curve
y =z

What are the KL eigenvectors of the graph of the function (z,?) computed
in a region about (0,0)? The diagonal terms of the covariance matrix are then

1 €
W) =1 / 2de

—€
where L is the arclength of the curve. The diagonal terms are odd functions
SO
1 €
(zy) = E/_€x3dx =0

The arclength is defined as
€
L= / V1+y'de
—€

Noting that the Taylor series for

2 3 5

\/1+2x:1+x—%+%—§x4+0(e5)

it follows that 5

L:2e—%+0(e5)

Hence 1 1
—_ = — 2
I~ 5 (1+ 0(€*))
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Now the diagonal entries may be evaluated as
2

(2%) = S (1+0()

and .
€

W) = S (1+0()

141

Hence the covariance matrix is already diagonal and to leading order is

given by

c(—O)
0 %

Uunlike the circle example, the standard basis is in fact the unique (since the

eigenvalues are distinct) KL basis.

Example 4.11. Local KL on the sphere. Recall that the surface of a sphere

in R® may be parameterized in terms of the position vector

x(u,v) = 21 (u, v)i + zo(u,v)j + z3(u, v)ﬁ
where
z1(u,v) = cosu cosv
Zo(u,v) = sinu cosv
z3(u,v) = sinv
and the domain T is the Cartesian product

T T

T =[0,2n] x [—5, 5]

Asthe point (u,v) € T is varied the parameterization vector (z1 (u,v), 2 (u,v), z3(u,v))”

traces out the unit sphere centered at the origin. The covariance matrix for

data over a patch S on the surface of the sphere is then defined

Cij = %/ /xlx]dS
S

where S is the surface area of the patch. It can be shown that the eigenvalues

of C are given by

62 64
M=h=g o
and .
€
X =5

where € is the radius of the ball enclosing the patch. The details of this

calculation are left to the reader, see Exercise 4.16.

We see that the number of singular values (eigenvalues) which scale linearly
with the size of local region is the same as the dimension of the tangent plane

of the sphere. This is discussed further in the next section.
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4.7.3 Local Representation and the Taylor Series

Now we return to the question of how a data surface is locally approximated
in terms of its tangent space. Consider the observed data to be sampled from
a vector function f

f:R" - R™

x ~ f(x)

In particular, we are interested in the situation where only the range values
of the samples {f(x(#)} are observed and that the associated domain val-
ues {x("} are unknown. In addition, the dimension of the domain is also
unknown.

Nonetheless, we may express this function as a Taylor series expansion
about the point xg, i.e.,

f(x, +h) = f(x,) + Df(x,)h + O(h?)

where Df(x,) is the Jacobian matrix of partial derivatives

ofr 0f1
Oz tee Oxy
Ofs 0f2
F) v D
Df(x,) = :.cl . w
Ofm Ofm
L2 tee Oxy

and h = (hy,...,hy).

To emphasize its dependence on the distance h, the expression for the
local change in the function about the point x, will be written 6f(h;x,) =
f(x, + h) — f(x,) The linear approximation to 6f(h;x,) is then

df (h;x,) = Df(x,)h = hl(‘f—xfl +-o hn%

With this notation, we may view the linear approximation df(h;x,) to
of(h; x,) as a vector expansion. In fact, df(h;x,) lies in the vector space,
centered at x,, spanned by the columns of Df(x,). The space spanned by
these vectors, i.e., the range of the Jacobian about the point xq is the tangent
space Tx,. (Note that df(0) = 0 so the origin of Tx, is the zero vector.)
Therefore,
of

f
df(h;x,) € span{(,f—xl,...,%

}=1Tx,.

4.7.4 Computation of the Tangent Space

Now that the Jacobian has been identified as producing the best linear, or
flat, approximation to a surface we seek to make the connection with the KL
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Fig. 49 A local covering of a data set in R2.

procedure. Imagine the limiting procedure of collapsing a ball about a point
on the surface. As the ball becomes smaller and smaller, the curvature of the
surface becomes less apparent. Indeed, by the time the ball is infinitessimally
small, the surface looks flat. We would presume that the KL eigenvectors of
this limiting ball would be span the Jacobian.

Following [22], it is possible to use the notion of KL dimension defined in
Section 3.5 to estimate the spanning vectors of the Jacobian. However, this
approach requires the estimation of an ad-hoc energy level. Another algorithm
for computing the tangent space of a surface from locally sampled data may
be based on the scaling of the singular values [9]. We now consider this
approach in detail. The method is attractive given it requires no arbitrary
energy criterion. It is based on the behavior of the singular values of a local
region.

Definition 4.3. An e-neighborhood matriz B (c) has columns made up of all
the data vectors {z — ¢} in the open ball of radius € centered at the point c,
i.e,

[|[x —¢|| < e.

The scaling argument is based on computing the singular values of B¢ (c)
as a function of €. Recall that the squared singular values are the eigenvalues
of the covariance matrix

C(e) = B.BT
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Proposition 4.3. (Broomhead, Jones, King [9]). Consider the mapping
f:U—-X

about the point xg € U. A basis for the tangent space Ty, is provided by the
singular values of the e-neighborhood matriz B.(xo) that scale linearly with
the radius €.

A proof of this proposition is provided in a general setting in [11]. A tangent
space constructed in this manner is referred to as an e-tangent space [9]. We
now summarize the local KL algorithm proposed in [9].

The Local KL Algorithm

. Define a set of (possibly overlapping) e-matrix neighborhoods {Be(c(9))} which cover
the data.

. For each neighborhood, indexed by %, compute the singular values as a function of

€ for ¢ — 0.

3. Identify the singular values which scale linearly with e.

4. The associated eigenvectors form the local basis. The dimension of each basis

is referred to as the local KL dimension.

Given sufficient data, the above algorithm can be quite effective for esti-
mating local dimensions, see, e.g., [9, 11, 1].

Statistics versus Dimension. The graph in Figure 4.10 depicts the result of
applying this algorithm to a neighborhood of uniformly sampled points on
the surface of the unit sphere. The top graph of Figure 4.10 compares the nu-
merically determined values with the analytical estimates (see Exercise 4.16)
and we see that they are in agreement.

To show the importance of the manner in which the data is distributed in
the neighborhood, we repeated the above experiment with deliberately non-
uniformly sampled data. The singular values are shown in the middle graph
of Figure 4.10; they still scale linearly with € but now the slope the local SVD
curve has changed.

From this simple example we conclude that the information contained in
the singular values consists of two basic components: local geometry and
local statistics. The geometry, i.e., the dimension of the tangent space, is
determined by the scaling of the singular values while the slopes of the curve
reflect the distribution of the data. In the next section we adapt the procedure
to remove the local dependence on the statistics.

4.7.5 Local Whitening Transformation

The difficulty in applying the local KL scaling criterion rests in determining
the exact nature, e.g., linear or quadratic, of the scaling of the singular values
which is complicated due to the influence of the data statistics. In this section



THE LOCAL KARHUNEN-LOEVE EXPANSION 145

L L L L L L
0.05 0.1 015 0.2 0.25 03 0.35

L L L
0.05 0.1 0.2 0.25 03 035

Fig. 410 Local SVD Curves for the unit sphere. Numerical values are triangles,
analytic estimates are indicated by the solid line. Top: the spherical cap has a uniform
distribution; Middle: the distribution of data was not uniform; Bottom: whitened
computations, with the analytic estimates.
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we present a method for eliminating the dependence of the singular values
on the local data statistics [34]. The result will be that the singular values
scale as a function of the dimension only. This is achieved by introducing a
local whitening transform which leads to a normalized scaling of the singular
value curves. The purpose of this scaling is to facilitate the determination of
the nature of the scaling of the singular values. This is especially useful for
applications which require that the dimension be estimated in a large number
of local regions. For such problems it is desirable for the procedure to be as
automatic as possible.

The basis for the modified algorithm is the observation that clusters defined
by spherical balls do not reflect the distribution of the data. The information
computed by the basic algorithm, however, provides a description of the local
ball which includes the data distribution. Before developing the specifics of
the algorithm which exploits this observation, we state and prove the following
geometrical fact:

Proposition 4.4. Let C be a nonsingular ensemble averaged covariance ma-
triz generated by the N x P data matriz X, i.e., C = XXT. Consider the
ellipsoid defined by

x'C'x=1 (4.50)

The eigenvectors of C are the directions of the principal azes of the ellipse and
the associated square-roots of the eigenvalues are the lengths of the semi-azes.

Proof. Tt suffices to trasform the equation for the ellipse into the KL basis.
Let U consist of the eigenvectors of C. Then

z=UTx

is the appropriate change of basis. Since U is orthogonal x = Uz. Substituting
this relation into Equation (4.50) gives

2'UTC Uz =1 (4.51)
Given that U diagonalizes C we have
C=UAU"
Assuming C' is nonsingular,
ct=vuA'U"

Substituting this equation into Equation (4.51) gives
2 UTUAT'UTUz =1

Again, using the orthogonality of U, we have z"A~'z =1 or

N
= A
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Note that the expression x7C~!x = ¢ represents a family of concentric el-
lipses.

A similar proof may be found in [39]. See also [33]. O

Equipped with this geometrical fact, we return to the develop of the modi-
fied algorithm. The starting point is the same as for algorithm 4.7.4, i.e., the
computation of the KL eigenvectors (left-singular vectors) and eigenvalues
(singular values squared) as the radius of a local neighborhood changes. This
information describes the distribution of the data in terms of a hyperellipsoid.
Thus the local distribution of the data may be accounted for if ellipsoidal balls
are employed in the scaling routine rather than spherical balls which treat the
data as if it were uniformly distributed.

The ellipsoidal neighborhoods determined in the first stage of the algorithm
may be used to order the data in the e-neighborhood matrix via the introduc-
tion of the A — norm written ||x||% = x” Ax where the matrix A is taken to
be C~! and C = B.B!.

k. = xTC'x
= xTUA'UTx
— (XTUA—1/2)(A—1/2UTX)

Defining
y = A"2uTx

we see that we may write

Ixl[g- =y"y = Iyl

Hence the ellipsoidal norm may be interpretted as the standard Euclidean
metric after the change of coordinates

Y = AT2UTB,

This transformation may be viewed as a local whitening transformation given
that the covariance matrix is the identity in the new coordinate system, i.e.,

Yyy' =1 (4.52)

We now observe that this local whitening transformation removes the de-
pendence of the scaling on the statistics of the data, and creates singular
values which depend exlusively on the local geometry of the data surface. In
particular, all the singular values are now normalized to have value o; = 1 for
the neighborhood of maximum radius B

€max*

Example 4.12. Local KL on the Sphere (revisited). In this example we
applied the local whitening transformation to data nonuniformly sampled from
the sphere (see the middle graph of Figure 4.10 for the results using the
standard local KL algorithm). The bottom graph of Figure 4.10 shows the
normalized singular values computed using the whitened data.



148 ADDITIONAL THEORY AND APPLICATIONS OF THE KL EXPANSION

The primary result that we exploit is that the whitened data produces
normalized singular value curves.

Geometric Scaling Law [34]. The slopes of all linear scaled singular
values must be ﬁ, and the quadratic coefficient must be 52;

max

In other words, for eigenvectors which span the tangent space, their associated
local SVD curves must have the form

€

01(6)26 -
max

Similarly, the region of lowest order curvature of the function has local SVD
curves of the form

A=

By using the hyperellipsoidal metric, or equivalently, the Euclidean metric
on locally whitened data, we have constructed a standardization of the slopes
of the local singular value curves. This standardization has an important

algorithmic consequence which we now discuss.

4.7.5.1 Efficient Implementation of the Geometric Scaling Law. The local di-
mensionality estimation algorithm based on the energy criterion, as well as the
algorithm based on the scaling criterion require that many SVD calculations
be carried out for each local region. Following [34], we now describe how the
transformation described above permits the local dimension to be estimated
in a fashion which requires only one SVD calculation per local region.

The idea is that the normalized line with y1(z) = /€emax and a quadratic
ya(z) = 22 /€2, have greatest deviation at the midpoint & = €max/2. Given
Y1(€max/2) = 1/2 and ya(€max/2) = 1/4 it follows that if o; > 3/8 the line
model is more likely while if o; < 3/8 the quadratic (or higher order) model
is more likely. Thus, in determining which dimensions are scaling linearly, we
need make only s single computation, at a distance of €pax/2 from center,
where the distinction between linear and higher order scaling is the greatest.
The decision is thus:

Geometric Scaling Dimensionality Criterion: If oi(€max/2) > 2, then

eigenvector 7 belongs to the span of the tangent plane. The local dimen-
sion is the number singular values for which this condition is satisfied.

These considerations may be translated into an efficient algorithm which re-
quires, ideally, only one eigenvector computation.

Fast Normalized Scaling Criterion Algorithm
Compute the local KL eigenvectors and
singular values of B, -
Locally whiten the data.
Compute the singular values of B, . /2.
Determine the number of singular values such that
O'Z(Gm%) > 3/8.
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This is the local dimension.

The intialization of €,,,x may be done by requiring that a maximum number
of data points be included in the neigborhood. In practice, the minimum value
of € may also be specified by requiring a minimum number of points in B..

Nonlinear Generalizations

While the global Karhunen-Logve expansion is an extremely powerful tool, it
is limited by the fact that it is a linear procedure. The local KL algorithm
described above is one approach to overcoming the limitations of such linear
methods. In Chapter 9 several partial or fully nonlinear reduction architec-
tures will be proposed.

Problems

Questions 4.1 - 4.9 deal particularly with ensembles extended according to
Definition 4.1.

4.1 Show that the function (f(z)+f(—2))/2 is even and the function (f(z)—
f(=x))/2 is odd.

4.2 Show that the ensemble average (u(z)) of a data set which is extended
is even.

4.3 Show that the symmetrized kernel is even in both variables, i.e.,

~

4.4 C.(z,y) isevenin z and y and C,(z,y) is odd in z and y.
4.5 Show that the solutions of

[ e = 2i)
must be even functions and that the solutions of
[ Catzww)ds = x@)

must be odd functions.

4.6 The even and odd eigenfunctions are orthogonal, i.e., for any ¢, and ¢,
we have

(¢67 ¢o) =0.

4.7 Show that all the even eigenfunctions ¢A$e belong to the null-space of C,
and that all the odd eigenfuctions ¢, belong to the null-space of C,.
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4.8 Derive Equation (4.17).
4.9 Consider again the data matrix
-2 -1
0 -1
X = -1 1
1 -1

N O

The matrix of data which corresponds to the reflection of the data matrix

above is then

1 -1
-1 1
Xr = 0 -1
-2 1

O N =

1

Hence the symmetry extended ensemble consists of the data matrix

-2 -1 1 1

& 0 -1 0 -1
X = -1 1 2 0
1 -1 1 -2

-1

1
-1
-1

—_ O N -

Show that the data matrix X may be written as the sum of an even 4 x 3

matrix X, and an odd 4 x 3 matrix X,.

a) Compute the eigenvectors and eigenvalues of X X7, ie., the best basis

for the columns of X.

b)

Compute the eigenvectors and eigenvalues of X, X! and X,X7! and

compare with those computed in part a) and problem 3.21.

Comment on the form of the eigenvectors in the nullspaces of the eigen-

vector problems solved in part b). Keep in mind that eigenvectors cor-
responding to a multiple eigenvalue are not uniquely defined.

Decompose the eigenvector of X X7 corresponding to the largest eigen-

value into even and odd components u = u.+u,. Under what conditions

are u,, u, eigenvectors?

4.10 Show that if ¢(z) is an eigenfunction of equation (4.8) with eigenvalue
A then £ R¢(z) is also an eigenfunction of equation (4.8) with eigenvalue .

4.11 Prove the orthogonality relations given by Equation (4.24).

4.12 Consider the two eigenvector problems

Cxu= A u

and
Csv = AV
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where the matrices are related by Cx = Cs + al where «a is a real number
and I is the identity matrix. Show that if u is and eigenvector of Cy, then it
is also an eigenvector of Cs with eigenvalue A\; = A, — a.

4.13 Let A be a real m X n matrix. Show that the matrix M defined as
M =a’I + AAT
is non-singular where I is the m x m identity matrix.

4.14 Compute the KL eigenvectors and eigenvalues of the graphs of the
functions

1. y=22
2. y=2z*

about the point (z,y) = (1,1), i.e., on the domain interval (1 —¢,1+¢€). In
each case,

o Identify how the eigenvalues and eigenvectors depend e.

¢ Determine the Taylor expansions and compare the range of the Jacobian
matrix with the results found above for the KL eigenvectors.

4.15 Compute the KL eigenvectors and eigenvalues for graphs of the family
of curves
y = Kkz"

on the interval (—e¢,€). Compare your results with the Taylor series expasion
about z = 0.

4.16 This problem concerns completing the calculations summarized in Ex-
ercise 4.11. In particular, it requires you to compute a local basis for unit
sphere centered at the origin. We choose arbitrarily to compute the basis
about the north pole (0,0, 1).

T =10,2n] X [7,7 + €]

e Given the formula for the surface area S of the patch

ox Ox
Te
S = 2w cos(e — 1)

[ [sas = [ [ setuopli g x S ldud

S Te

show that

¢ Given
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show that
1 T+e€ m
Cij = §/ / z;(u,v)z; (u,v)| cosvdudv
T 0

e Show that

— C11 = Coy = § — Fcose(l + cose)

_ —1_2 1 2
C33 = 3 — 5 C0s€ — 5 cos’e)

—Ciy=0ifi#j

e From the Law of Cosines we have R = 1 — cose where R is the radial
distance from the point (0,0,1). Show that the eigenvalues may be
rewritten as a function of R to give \; = Ao = R?/4 — R*/24 and
A3 = RY/12.

4.17 Consider the vector function

x
f(z,y) = y
z2 +y?

in the square local region z,y € (1 —¢,1 +¢).

(a) Compute the linear approximation df about the point x, = (1,1)”. Are
the columns of the Jacobian orthogonal?

(b) Compute the local KL eigenvectors and eigenvalues centered about the
point £ = (1,1,2)7 and compare with part (a). To solve this problem,
you may either use a symbolic math package or procede numerically. In
the latter case, evaluate the ensemble average covariance matrix as a
function of € and compute the eigenvalues and eigenvectors for several
different values of e. Plot the square roots of the eigenvalues versus e.
Determine the eigenvectors which span the tangent space, i.e., the range
of the Jacobian, based on the observed scaling.

(c¢) Using techniques from Calculus, compute the plane tangent to the sur-
face z = f(z,y) = ? + y? at the point (z,y) = (1,1). Show that this is
the same plane as the one spanned by the bases in parts (a) and (b).

(Hint: Compare with Problem 4.16. Also, note the following: Given a
vector in the plane x; and the vector normal to the plane n, the equation
for the plane is given by (x — x;) - n = 0. Two vectors x;,X3 span a plane
which has as its normal the vector cross product n = x; X x3. Consider the
surface z = f(z,y). The plane through the point r, having n as its normal is
called the tangent plane to the surface at r,. The normal vector is given by

n=—f;i—fj+k)
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4.18 Prove Equation (4.52).

4.19 Proposition 4.4 agsumes that the covariance matrix C is non-singular.
Restate the proposition for the case that C is singular. Adapt the proof in
the notes for this case.

Computer Projects

4.20 The project concerns the application of the KL procedure for incom-
plete data [19]. Let the complete data set be translationally invariant

N
1 1 .
f(@m,ty) = I Z % sin(k(zm — t4)) (4.53)
k=1
where m = 1,..., M is the dimension of the ambient space (size of the spatial

grid) and u = 1,..., P is the number of points in the ensemble. Let z,, =
(m — 1)27/M and t, = (u — 1)27/P. Select an ensemble of masks {m(#},
p=1,..., P, where 10% of the indices are selected to be zero for each mask.
Each pattern in the incomplete ensemble may be written

%) — W gl

where (F#),, = & SN | Lsin(k(@m — t,)). Let P=M =64 and N = 3.
1. Compute the eigenvectors of this ensemble using the algorithm 4.5.2.

2. Plot the eigenvalues as a function of the iteration and continue until
they converge.

3. Plot your final eigenfunctions corresponding to the 10 largest eigenval-
ues.

4. Plot the element %) and the vector %p repaired according to Equa-
tion (4.42). Determine the value of D which gives provides the best
approximation to the original non-gappy pattern vector.

Problem 4.1. This project concerns the computer implementation of local
KL.






Part 111

Time, Frequency and
Scale Analysis






7]

Fourier Analysis

157



