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3.1 INTRODUCTION

The goal of this chapter is to address how dimensionality reducing mappings
are optimized over the class of orthogonal transformations. Orthogonal trans-
formations are linear, thus the optimization problem amounts to finding a best
basis for the change of coordinates in the sense of Equation (2.1). We may
visualize this transformation as a rotation of the coordinates which reveals
the subspace in which the data resides. Given the nature of the theory in the
linear framework it will be seen that optimal, in a sense to be made explicit,
orthogonal transformations are natural and easy to use.

The main result is the well-known Karhunen-Loéve (KL) expansion [28, 35].
Its importance in pattern analysis is substantiated by the number of aliases
under which the technique is known, which include the Proper Orthogonal
Decomposition (POD) [35], Principal Component Analysis (PCA) [24, 26],
and Empirical Orthogonal Functions (EOFs) [36]. It is also closely related to
the well-known singular value decomposition (SVD)[22]. It is rather astonish-
ing, given its rich history and widespread application, that the KL procedure
has received so little attention in standard courses in applied mathematics,
linear algebra and engineering.

Our presentation begins with with the framework for defining optimal bases
in Section 3.2. This is followed by a special case, i.e., computing the best line
for a collection of points in the plane. This reduces the KL procedure to
its simplest setting. The formulae derived here are indeed a special case of
the general equations in higher dimensions. We then derive the general KL
procedure in Section 3.4. The resulting approach will be referred to as the
direct method, following [43, 44, 45]. Section 3.5 presents the most important
and widely used properties of the KL expansion. The mathematical framework
of the linear theory of optimal transformations is discussed in detail and the
optimality criteria which lead to the derivation of the KL expansion are fully
characterized.

The direct method for implementing the KL transformation cannot be ap-
plied to elements of high-dimensional vector spaces, e.g., dimensions above
1000, unless an alternative approach is used, which we will refer to as the
snapshot method given its natural application to digital images. In Section
3.6, we present this technique and apply it to the Rogue’s Gallery problem,
i.e., the characterization of high resolution digital images of human faces, a
problem initiated in [46, 29].

Section 3.7 re-examines the KL transformation from the perspective of the
singular value decomposition described in Section 2.9. The SVD permits a
deeper understanding of the relationship between the Direct and Snapshot
methods for computing the eigenvectors.

In Section 3.8 we present an extension of the KL procedure for gappy data
proposed in [13]. This is followed by a discussion of the application of the KL
procedure in the presence of noise in Section 3.9.
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3.2 WHAT IS AN OPTIMAL BASIS?

Consider an N-dimensional inner product space V equipped with an ordered

o.n. basis B = {v(l), e ,V(N)}. Every point in V may be expressed without
error in terms of the basis vectors as
x® = gy ... 4 gy (3.1)

where a{*) = (x(#),v®). It is clear that the coefficients al*) in the expansion
depend on the basis B.

The purpose of this chapter is to mathematically characterize the notion
of an optimal basis. Given a data set, how should a basis B be constructed
such that the truncation of the full N-term expansion in equation (3.1) to a

D-term term expansion
x® = Wy 4 oM@ ... 4 oW y(D) (3.2)

will produce a minimum error? Given x%‘) is an approximation to x*) we

write
x(® x%‘)

and the accuracy of this expression will be at the center of our discussion.
Now we assume we have a collection, or ensemble, of P patterns {x(*)},
with each x(® € V ¢ RM. In practice, an optimal basis for V will extract, or
package, the salient features and information in the data. Ideally, this setting
will enhance our ability to study the data in terms of a significantly reduced
number of expansion coefficients.
The basis will be optimal because it minimizes and error over the set of all

o.n. bases. The error vector for each pattern 6%‘) is the difference between

the exact point x®) and the truncated expansion x%‘), ie.,

6%) = x(#) _ x%‘).

A scalar measure of the error is then simply

e =l
As shown below, a closed form formula for the best basis may be obtained for
the square error
ese = 111

Actually, we will be interested in representing a whole family of patterns
with minimum error and require the basis to characterize all of the patterns
equally well on average. To quantify this, define the ensemble average of a set
of vectors x(, x| ... x(P) a5

(x) = P Z x(#) (3.3)
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It should be noted that the above addition is applied component-wise; it is
standard practice to omit the pattern index p for terms within the angled
brackets when writing an ensemble average.

It is customary to mean subtract each pattern in the ensemble. This is
geometrically equivalent to moving the center of the coordinate system of the
patterns to the ensemble average (or centroid) of all the data set. Thus we

define a new ensemble
W = x — (x).

Definition 3.1. The quantity X is called the fluctuating field, or charica-
ture, of the pattern x(#)

In what follows we will assume, unless otherwise stated, that all the pat-
tern vectors have been mean subtracted and we drop the tilda notation for
convenience.

Definition 3.2. The mean square error €,s. of a D—term approzimation to
an ensemble of vectors is defined as

€mse = (”X - xD||2> (34)
= (le%|1%) (3.5)

Unless explicitly stated otherwise, we shall assume that the norm above is
induced by the usual Euclidean inner product.

Let’s re-examine our previous remarks in terms of subspaces. We may
decompose x®) in two pieces as

D N
x(H) — Z alPv® 4 Z a{ v (3.6)
i=1 i=D+1
)y (3.7)

The basis for this vector expansion may be used to define the subspaces Wp =
span{vV ... v(P)} and W3 = span{vPTV ... v(M}. These subspaces
split V' into two pieces

V=WpoWs

where the truncated representations x3,” lie in Wp and the error vectors &
lie in WIJ)-.

While the orthogonal projection theorem tells the orthogonal expansion
provides a ”best approximation”, it says nothing about how to find Wp such
that we obtain the best possible best approximation. Thus our task is to
determine a single basis which provides the optimal subspace Wp for any level
of truncation 1 < D < N. Again, optimal here means that a well-defined
error should be a minimized over all possible D-dimensional subspaces.

We now continue our discussion of optimal bases in terms of a familiar data.

analysis problem.

(W) (w)
D D
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3.3 ON LINES OF BEST FIT

In 1901 Karl Pearson published a paper entitled “On Lines and Planes of
Closest Fit to a System of Points” [39]. This paper presented many of the
important ideas that eventually developed into a general approach for dimen-
sionality reduction. In this section we consider a simple example examined
by Pearson, i.e., the problem of finding the closest line through a collection of
points. Our treatment will be from a somewhat different perspective, specifi-
cally, we wish to determine the best one-dimensional subspace W, such that
the decomposition
R =W, @ We

is optimal. This discussion permits us to understand the KL procedure in a
simple setting and to compare it with other classical approaches.

One of the first approaches one encounters in the modeling of data is the
well-known method of least squares [48]. For instance, this technique can be
used to determine the best linear model for a collection of points lying in the
plane. We begin by assuming that an ensemble of 2-tuples {(z(?,yD)}¥ | are
connected by the relation

y=azr+b (3.8)

Here, it is assumed that the {(?} are known exactly and the {y()} should
be fit as well as possible. Equation (3.8) is the best line that relates y to z
and is referred to as the the regression line of y on . Now we must determine
the best choices for the parameters ¢ and b such that this linear model pro-
duces a minimum error. Indeed, how we choose to compute a and b is what
distinguishes standard least squares fitting of data with the method proposed
by Pearson.

Thus, it is of interest to investigate different possibilities for computing the
error of the best line approximation to a collection of points. This discussion
will reveal the connection between least squares and a special two-dimensional
case of the Karhunen-Loéve expansion. It is noteworthy that this is one of
the relatively few examples which permit an explicit calculation of what we
will refer to later as the optimal eigenvectors.

The straight line approximation provided by least squares is determined by
computing the values of a and b which minimize the average error

(eZ) = (W —az® = )2 + - + (4N = az™) —p)2. (3.9)

The quantity (y() — az() — b) is the difference between the actual value of
the data point ¥y and its modeled value Y = az™ + b. It is a straight
forward application (see problem 3.1) of linear algebra to show that the best
values of @ and b are given by

TNy

IANCRI N 10
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line of best fit

Fig. 3.1 Theline of best fit. In standard least squares the line is computed by minizing
one of the errors {e2) or {2). The best KL fit corresponds to minimizing the magnitude
of the component orthogonal to the best line.

where we have assumed for simplicity that the mean of the data is zero, i.e.,
Y@ =3 9 =0

As Pearson pointed out, it is inherent in this model that y is the dependent
variable and that x is the independent variable. In practice, however, it is
often not a simple matter to designate one variable as the dependent variable
and the other as the independent. For instance, consider (¥ to be the length
of someone’s leg and (¥ to be the length of their arm. It might be conjectured
that there is a linear relation between these but it seems rather arbitrary to
identify one as the dependent variable.

It is simple to develop an equivalent to equation (3.9) where we view x as
the dependent variable and y as the dependent variable, namely

€)= (@W —eyW —d)? + .-+ @™ — ™ —q)?.  (3.11)

This model is based on the equation z = cy + d and it suggests that given the
value y(9 minimize the predicted value z(¥ and again the error is minimized
over all the the points in the ensemble.

Based on these considerations then, it is natural to consider a measure of
the error which does not require that the variables be treated differently. This
is accomplished by finding the line which is closest on average to every point
in the data set. See Figure 3.3 for a geometrical comparison of the errors
which may be minimized in the construction of the line of best fit.
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best line y=kx+1

Fig. 3.2 The line of best fit is found by minimizing the magnitude of ||w(i)|| on
average. Equivalently, the average magnitude of the orthogonal projection v® should
be maximized.

We begin by writing the model equation as y = kz + I. Note that, similar
to the example above, if data has been mean subtracted then one can show
that the intercept I = 0, see Problem 3.2. First write a single point as a vector
ul® = (29, y®) € R2. Also, write the vector pointing in the direction of the
model line as m = (1, k). Thus the line y = kz may be written as the vector
v = am where a € R as shown in Figure 3.3.

To examine this question further, write w(® = x(® —v() where v(Y = a;m.
There is a unique value of a; which corresponds to the orthogonal projection
of x(9 onto v(¥. It is this value of a; which provides the vector along m best
approximating x(®. Thus a; may be found geometrically by requiring that
v and w(? be orthogonal, i.e.,

(w®, vy = .

Substituting w(® = x(® — v(9 we have the following series of calculations
which provide a;:

(x) — () y®) = g
(D — a;)a; + (¥ — aik)aik =0
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and assuming a; # 0

& — a; + y(i)k —a;k?=0
Q= ———
1+ k2

Recall that for each data point it is the vector w(¥) which gives the error.
This is the fact we will use to determine an expression for the ensemble average
error as a function of k.

We now evaluate the expression for the magnitude of the error |[w(®|? as
a function of the line slope k:

[w®|? = (w®, w)
(x(’) — a;m, w)
= (x, w) — o;(m, w?)
(X(Z) W(1))

where we have used the fact that (m, w() = 0. Now
lw@|? = (x®, w®)
= (x,x® — a;m)
= [Ix?]* = a;(x¥, m)
. . () 4 ky()2
_ (@32 o (g2 _ @Y T Ey)”
@Oy + oy - T

Since we are to minimize the error over all the data points in the ensemble
we must find the quantity k* such that

(Ilw (&)%) = min(|w(k)|[*). (3.12)
We first write the error explicitly as a function of &
S S Gl )
(IIw(®)I%) = (=" +y 5 (3.13)

where we have dropped the subscripts of the data points as per convention.
We now have an expression for the ensemble average error which we may view
as a function of the slope of the line k. To determine the £* which minimizes
this error we require

ollw(k)1*) _
ok =0 (3.14)
Differentiating equation (3.13) gives
olw(®I*) _ _(2(90 +ky)y(1 +§°) — 2k(z + ky)2>
Ok (1+k2)?

(3.15)
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and upon setting this equal to zero and simplifying we obtain
(4 ky)y(Q+ k) — k*(z + k*y)?) = 0. (3.16)
Factoring further simplifies this expression
((z+Ey)(y-k"z)) =0
from which it follows
(1=F)2y +k* (y* - 2*) =0
and consequently

(1 - K*%)(ay) + k* (4 - 2%) = 0.

If we define
R
(zy)
then we have for our optimal value of k* the solutions to
B2+ 8k —1=0 (3.17)
which has the solutions
g = PEVE A \;'3“4 (3.18)

Hence, after some simplification

e o= W= (@) Vi{z? — ) + 4ay)?
= 2ay) 2(zy)
Observe that there are two values of k*, i.e., k* and k%, which satisfy the
constraint equation (3.14). The line which is orthogonal to the value of k*
which minimizes the error would be the line which would correspond to the
worst value of k.
We note that the procedure described in this section is sometimes referred
to as total least squares [17].

(3.19)

3.4 CONSTRUCTION OF THE OPTIMAL BASIS.

We now consider two related derivations of the Karhunen-Loéve expansion.
The first approach is based on minimizing the error term resulting from an
orthogonal projection onto a D-dimensional subspace. We refer to the deriva-
tion as the simulataneous approach given that the subspaces are defined by
a single optimization problem. The second approach proceeds by maximiz-
ing the mean-square projection of the data onto sequential one-dimensional
subspaces. The two approaches produce equivalent results while providing
different interpretations of the procedure.
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3.4.1 The Simultaneous Approach

Now we consider the actual construction of the optimal basis which, for any
1 < D < N, produces a pair of orthogonal subspaces

V =WpoWs

that minimizes the mean square truncation error €,,5.. Given an ensemble of

vectors {x(#) Ho—1, with each x(#) € V and dim V = N, we seek a set of basis

vectors {¢\¥) }L, such that the error of the truncated expansion is minimized
in the mean-square sense. Recall that any pattern vector x(*) may be written
without error as

N
X =3 o).
j=1

The expansion error vector may be expressed in terms of the basis since

6%) = x(#) _ x%‘)
N .
_ Z a§N)¢(J)_

j=D+1

On average we have

€mse = (||5%) ”2)

= ((e%),e%))

N ) N
=Y 48P, 3 are™))
j=D+1 k=D+1
N .
=( Y aa(e, ™))
jk=D+1

which upon invoking the orthonormality relation gives
N
€mse :( Z (I?)

j=D+1

and hence
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Noting that (x, @)% = (¢, xxT ¢) and defining C = (xx) we can write

N

Thus the total mean-square-error due to truncating the expansion is

N

emse = »_ (¢V),Co). (3.20)

j=D+1

We compute the eigenvectors ¢(i) which make €5 a minimum using the
technique of Lagrange multipliers [1] subject to the constraints (¢, ¢\¥)) =
1. These constraints ensure nontrivial solutions for the extrema. As usual,
define the functional

N N
9@, ™M)= 3" 9, CoP)— D N9, 9) - 1)
j=D+1 j=D+1

In what follows we employ the notation

00 80y

V() = (%,,%
It is a simple exercise to show that
Vv(v,v) =2v
and that given C is a symmetric matrix
Vv(v,Cv) =2Cv.
To obtain the extrema we must simultaneously require that
Ve g(@Pt, . ,¢M) =0

forj=D+1...N.
The best basis vectors are then provided by solving

Vg =2Cp% — ;2919 =0,
i.e., the eigenvector problem

CopW) = x99, (3.21)
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We refer to the basis {¢(?} as the KL eigenvectors, or KL basis.

The astute reader may object to the omission of the constraint that the
eigenvectors be required to be orthogonal in the formulation of the Lagrange
multiplier problem. This did not disrupt the derivation given that the lagrange
multipliers of the omitted constraints are in fact zero. This is established in the
next derivation. Note also that the resulting symmetric eigenvector problem
always will produce a set of o.n. basis vectors.

Depending on the size of the ambient dimension N and the number of pat-
terns P, we employ either the direct method (N > P) or the snapshot method.
These techniques are discussed in full later and given a unified treatment via
the singular value decomposition.

3.4.2 The Sequential Approach

In order to develop a better intuition concerning the properties of the KL
eigenvectors we consider another derivation of the equations for the best basis.
It proceeds sequentially as follows:

¢ Find the best one-dimensional subspace Wj.

¢ Find the best one-dimensional subspace Wy with the restriction that it
be orthogonal to W;.

¢ Find the best one-dimensional subspace W; with the restriction that
Wi L W for all j <.

This process will result in the same eigenvector problem as in the simultaneous
derivation of the previous section. In fact, the same equation is produced after
the first step, an indication of the tightly knit structure of the linear theory.
For simplicity we will assume that the eigenvalues corresponding to the best
basis vectors are distinct.

Now we define the best first eigenvector ¢(1) to be the one which maximizes
the mean-square projection of all patterns in the ensemble onto itself. Namely,
find

max((6™M, %)2)
oM
subject to (¢(1),¢(1)) =1.

Again, this problem may be solved via the technique of Lagrange multipliers.
Write as before

a1(6M) = (M, %)) - M [(¢", 6)) - 1]
= (¢, CoM) — N [(p, M) - 1]

Differentiating w.r.t. ¢(J we obtain

Vo D(@") =2Ce" — 20 =0
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or

C¢(1) =\ ¢(1)_

Note that this eigenvector problem is a necessary condition. It is associated
with an extremum, i.e., either a maxima, or a minima. Hence both the best
and worst directions will satisfy this equation. The next best basis direction
should satisfy the above requirements of maximum projection, but with the
added restriction that it be orthogonal to the best direction ¢(1). Thus, the
second eigenvector ¢(2) is found requiring

max((¢®,x)*)
»2)

subject to (¢(2), ¢(2)) =1 and (¢(1)7¢(2)) =0

where now ¢(1) is assumed to be the (now fixed) o.n. vector found above.
Again, the method of Lagrange multipliers requires us to find the extrema
of

92(6®) = (6P, CoP) = X[(6,0P) — 1] — (oM, 9).

Now differentiating w.r.t. ¢(2) we obtain
Vo2 D(¢®) =2Co —2x,6® — 249" =0.

Hence, taking the inner product with ¢(1) we can show that y must be zero
because of the orthogonality condition. Namely,

(0™, CoP) = A (M, @) — u(pM, M) = 0.
But
(¢, ¢) =0

and

C¢(1) , ¢(2))

(¢, Co™) = (
= (Mo, 9?)
=0

Using these facts we have

@™, 9" =0

from which we conlude g = 0 since ||¢V || = 1.
The process for determining the 7’th best eigenvector given the first i — 1
eigenvectors is analogous and is investigated in Exercise 3.17.
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Ordering of the Optimal Basis

A natural ordering for the optimal basis {¢(j)} is provided by the spectrum
(i.e., the discrete set of eigenvalues) of C. Recall that the first eigenvector
was found by requiring that

(W, x)?) = maximum

or, equivalently, that (a?) = A\; = maximum. Proceeding in this fashion, the
second eigenvalue is defined so that A =maximum, subject to the constraint
that the associated coordinate direction ¢(2) be orthogonal to ¢(1). Hence

AL > A

The remaining eigenvalues are defined iteratively such that each A; is a
maximum subject to the requirement that the associated coordinate direction
¢(i) be orthogonal to {¢(1), e, ¢(i_1)}. Hence at each step A; > A\iy1, S0 we
conclude

At ZA 22 An 20.

Therefore the eigenvectors can be ordered naturally according to the amount
of variance contained in their respective directions. The pattern x(#) is then
approximated by the basis vectors ¢ corresponding to the largest eigenvalues
of C.

Special Cases

It is interesting to consider two special cases that may occur for the eigenvalues
and to interpret their significance geometrically.

Ai = A with ¢ # j: In this first case, the eigenvectors associated with these
eigenvalues are not unique, although the subspace they span is. We will see
below that this may also be interpretted as each direction storing exactly
the same amount of information. If there exist a set of k equal eigenvectors
then they define a unique k-dimensional subspace although the eigenvectors
themselves are not unique.

A; = 0 for some i: In this second case, there is no variance in the coordinate
along this direction. Hence we may conclude that no information is present
and this coordinate may be safely truncated.

3.5 GENERAL PROPERTIES OF THE KL EXPANSION

In this section we outline the useful properties of the KL decomposition. The
framework of the optimal orthogonal transformation is especially rich, and
the optimality condition takes on many (equivalent) aspects.
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Property 3.5.1. The N x N matriz C is referred to as the ensemble aver-
aged covariance matriz. It is symmetric and determines an ordered set of N
orthogonal eigenvectors with associated real eigenvalues.

The following property is actually true for any data set which has zero
mean.

Property 3.5.2. For an ensemble of fluctuating vectors, the coordinate val-
ues a; are zero on average. To see this write

Property 3.5.3. The KL expansion coefficients are uncorrelated on average,
i.e.,
(ajak) =0

when j # k.

x,p9)(x, p*)))
¢(j),xxT¢(k)))
= (¢, (xx") ")
¢(j), Cqb(k))

¢, \p)

= A0jk

(ajar)

=((
=((
= (
= (

In particular, (ajar) = 0 when j # k. Although the data is uncorrelated on
average in the KL coordinate system, it is possible that the data is correlated
on subsets of the total ensemble. E.g., in a time-series setting it is possible
for the data to have short time correlations in the KL basis coordinates. If
X C X then we may write (ajax)z # 0.

Property 3.5.4. The eigenvalues of C are non-negative
Aj = (af) >0,
forj=1...N.

This follows directly from the previous property for the case j = k. Note
that the number of non-zero eigenvalues is equal to the rank of the matrix C
which in turn equals the dimension of the space spanned by the data set. See
Section 3.7 for more details.
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It is also possible to view our derivation as maximizing the variance along
each coordinate direction, subject to orthogonality constraints.

Property 3.5.5. For mean subtracted data, the statistical variance of the jth
coordinate direction is proportional to the jth eigenvalue of C.

We write the statistical variance of the jth coordinate direction over the
ensemble of patterns as var(a;) where

1 P
var(aj) = 5 > (o) — {a;))?

That is,
var(a;) o< A

where we used the fact (a;) = 0.

Property 3.5.6. The eigenvalues of C give a measure of the truncation er-
TOT.

N
€mse — Z )\j (322)
j=D+1
Substituting the eigenvector equation C¢(j) = )\jqb(j), into

N

€mse = Z (¢(])7C¢(]))

j=D+1
then,

N

€mse = Z (¢(])7)‘]¢(])) (323)

j=D+1
N
= > N (3.24)
j=D+1

Property 3.5.7. The KL basis captures more statistical variance than any
other basis. Let {1/1(’)}%\;1 be any other basis for the inner product space V
and write the D-term ezxpansion for an element of V as

D
X8 3 ),

Jj=1
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Define
pj = (b§>
D D
PN ED IR (3.25)
j=1 j=1

with equality when {1V} is the KL basis.

Definition 3.3. A data set is said to be translationally invariant if x € X
implies that any cyclic permutation of the vector x is also in X.

Property 3.5.8. If X is a translationally invariant data set, then the optimal
eigenvectors are the Fourier vectors, i.e., sinusoids.

We will prove this in Section 3.7.1. Thus, for translationally invariant data,
the discrete Fourier transform provides an analaytical form for the best basis.

Shannon’s Entropy

A standard measure of information is provided by Shannon’s entropy which
is defined as

N
H= —ZPilnPi
i=1

where Zf\il P; = 1. If we interpret the normed eigenvalues of the covariance
matrix )
50 — A
Z;.": LAG)

as the probabilities F;, then it is possible to show that the KL eigenvectors
are optimal in an information theoretic sense, i.e., they minimize H [51].

The significance of Shannon’s entropy H in this context is that it provides
a measure of the distribution of the magnitude of the eigenvalues, or energy,
across the coordinates of the basis. In particular, if the probabilities are all
constant with

1
foralli=1...N, then
H=InN
Also, if
P=1 ifi=1,
P,=0 f1<i<N
then

H=0.
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See [27] for a proof of these facts.

In these two extreme cases we can see that if all the eigenvalues are equal
then there is no compression of information, i.e., there is no preferred coordi-
nate direction and H is a maximum. On the other hand, if there is only one
non-zero eigenvalue, then all the information is contained along one coordinate
and H is a minimum.

Property 3.5.9. The Karhunen-Loéve basis minimizes Shannon’s entropy.

Proof. Following [11], consider an arbitrary o.n. basis B for the data set X
consisting of ordered vectors {1/J(J )};Y:l and the expansion for x € X, i.e.,

N

X9 = 3 )

i=1

With respect to this basis, the total variance of the j’th coordinate is given
by

P = (b3)
and the normalized variance by
5 G) ]'f,)(])
Pzt PO

Furthermore, we assume that the basis {¢(j) };Vzl is ordered according to the
variance
p(l) Z p(2) Z - Z p(N) Z 0‘

The total entropy may be written as a function of the basis
N
H(B) = - Z 59 1n pO).
j=1

Because the KL system maximizes the variance we have

Xj: 5 < XJ: A
k=1 k=1

Now define this left term as a; = i=1 p™®) . This quantity corresponds to the
fraction of variance represented by the first j coordinates. Now the entropy
may be rewritten as
N
H=-Y (aj—aj1)ln(a; - a;j1)

=1
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To obtain the extrema we differentiate

It is an exercise to verify that
forhd e AP (3.26)
aj — Qi1

from which we conclude that
OH
— <0
Oo,y, —
so H is a decreasing function of a,,. Thus, H is minimized when a,, is

maximized, but this is exactly the property of the KL basis. O

Truncation Criteria

It is common in some applications to refer to the statistical variance as energy
given it is a measure of amplitudes squared. Using this terminology, the total
energy in the data is denoted

N
En = Z i
i=1
The energy captured by a D term expansion is given by
D
Ep=>) M.
i=1

Typically, for purposes of comparison, we will be interested in the normalized
energy

. Ep
By =20
D En
Now one can also interpret the quantity
~ M
i = —
En

as the probablity that a pattern is contained in the subspace spanned by
the eigenvector ¢(’). Note that the normalized mean square error is readily

available as
N

A - -
€Enmse = Z El =En — Ep.
i=D+1
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We will refer to a plot of the eigenvalues versus the eigenvalue index as a
KL-spectrum plot. Often we will plot log(A;) versus i to enhance visualization
of sharp decreases in the eigenvalues. Also, it is often useful to plot Ep as a
function of the number of terms D in the expansion. These plots are used to
estimate the so called KL dimension of the data. This dimension is generally
taken as the number of terms required to ensure that some minimum quantity
of energy is captured by the data.

Several ad-hoc criteria have been proposed for determining the number of
terms D to retain in the expansion

D
X = Z ajqb(j).
Jj=1

A simple but widely used energy based criterion is to retain the number of
terms necessary to capture a specified fraction of the total energy [16]. Specif-
ically, we have the normalized energy criterion

Ep >y (3.27)
or equivalently, that the normalized mean square error
€Enmse < 1 — Y (328)

should be less than some constant +, typically taken to be v € [0.90,0.99]. The

equivalent constraints specified by Equations (3.27) and (3.28) can be shown

to be connected to the Frobenius norm of the data matrix, see Problem 3.20.
In addition it is often useful to add the restriction that

ADi1 (3.29)
A

where 6 = 0.01, for example. This is a restriction on the 2-norm of the data
matrix. We summarize these remarks with the following definitions:

Definition 3.4. The KL energy dimension, written dim(KLE., ), is defined
to be the minimum number of terms required in the orthogonal ezpansion to
ensure that Ep > .

Definition 3.5. The KL magnification dimension, written dim(KLMjs), is
defined to be the minimum number D required to ensure that Apy1/A < 6.

In addition, it is useful to combine these definitions into a total KL dimen-
sion, written dim(K LD., 5) which may be defined as the maximum of KLE,
and K LM;. Note that the utility of these global definitions of dimension is
limited by the requirement of making ad-hoc choices for v and §. In Section
4.6, we will present a scaling argument which eliminates the need for these
parameters in the estimation of local dimension.
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While this definition of KL-dimension seems to be connected to other mea-
sures of dimensionality, there are also other criteria which have been proposed
for determining the number of terms to retain in a best basis expansion. It
has been observed that the KL-spectrum often can be viewed as two lines.
The point where these lines intersect determines the value of D. In fact, there
is considerable evidence that in many cases the data along the second line
corresponds to noise. Although this is a risky assumption as we shall see.
Finally, it should be emphasized that the utility of these measures is greatly
enhanced if they can be implemented in a problem dependent fashion. It is
clear that one may require far fewer terms for a classification problem than a
reconstruction problem where more details in the pattern are required.

Matrix Notation

In this section we would like to reinterpret the expansions as linear transfor-
mations and emphasize the dimensionality reducing properties of these trans-
formations. We begin by constructing a matrix ® made up of the eigenvectors
of C,ie.,

@ =[¢"|p®]... |¢™)]
Thus the coefficients of the pattern vector w.r.t. the KL basis are now
a) — Tx®)
)T

where a(®) = (ag“ ), e ,ag\‘f) . These relations may be combined to give

A=0TXx (3.30)

If we have determined a number of terms D to retain in our expansion, clearly
it is not required to compute all the terms in the expansion. Hence, it is useful
to define a dimensionality reducing transformation based on ®p where

Oy = [¢(1)|¢(2)| . |¢(D)]

is a matrix with D columns, namely the first D eigenvectors. Now, the D
coeflicients are given by

alw = aLx®)
)T

where 4 = (ag“), ces ,a%‘) . Or, in matrix notation,

A=aTx

where A is a D x P matrix. It is identical to the first D rows of 4 in Equation
(3.30).



82 THE KARHUNEN-LOEVE (KL) EXPANSION

Property 3.5.10. The KL basis diagonalizes the ensemble averaged covari-
ance matriz C

(aa”) = ((@"x)(x" ®))
=oTCd
=A

where Ay; = A; and all the off diagonal elements are zero.

Property 3.5.11. We now have the spectral decomposition of the covariance
matriz as C = ®ADT, ie.,

T
C=ngMoM" £ 26@e@" 4. L Ayd™e™

This allows us to decompose the covariance matrix in an optimal way. Note
that if P < N then we do not expect more than a basis of P vectors. The
remaining N — P vectors belong to the null space of C.

3.6 THE SNAPSHOT METHOD

The construction of a data-dependent basis as outlined above requires solving
the eigenvector problem
C¢(J') — )\j¢(j)
where C is an N X N matrix consisting of the average of P rank one covariance
matrices. If N is large, say of order O(10%), then it is generally not possible to
solve this problem directly. There are a variety of techniques for computing the
largest eigenvalues and eigenvectors but if the matrix C is a singular matrix,
then the problem may be reduced without approximation to an eigenvector
problem of size P x P. The technique is referred to as the Snapshot Method
because of its applicability to data sets consisting of high-resolution digital
snapshots [46, 43, 29].
The fact that the basis is data dependent may be made explicit.

Proposition 3.1. If A; > 0, then

P
o) = Z alx®) (3.31)
v=1

The data spans the same space as the eigenvectors corresponding to eigen-
values with non-zero variance.

For simplicity write ¢(1) = ¢ and a,(,l) = a, We can reformulate the
variational problem for the first eigenvector as

h($) = ((¢,%)*) = M(¢, ) — 1).
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Then
Za x(¥) x)? Za,,x(") Zagx(g) -1
Za x®), x)]? Za o ( x®),x®)) - 1)
7£
Then
Oh(a) _
da,
for 7 =1,..., P. Now the basis may be optimized w.r.t. the coeflicient vectors

a in place of the eigenvectors, the advantage being that there are only P
of them, rather than N original basis vectors.
Differentiating h(cx) gives

aaT Z ay, x™, %)) — 2X Z o x®, x(My =0 (3.32)
3
Expanding the ensemble average gives

1
5 Z a, (X(V), x(ﬁ))(x(f), x(&)) - Z g (x(ﬁ) , x(T)) =0
v, 3

Note that a common term may be factored as

>, O 0 (x), x9) — Prag] = 0

3

If we write

Bt = Z o, (x),x®)) — Pag (3.33)

then for each 7 =1... P it follows

Z(X(T),X(g))ﬂg =0. (3.34)

3

Defining
Ly, = (X(V) x(u))

Equation (3.34) may be written in matrix notation as
IB=0 (3.35)

and Equation (3.33) as
La-)a=p0
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The trivial solution 8 = 0 of Equation (3.35) leads to the eigenvalue problem
La =)\ (3.36)
i.e.,, a P x P eigenvector problem.

Remark 3.6.1. Again, the proof here is for the first eigenvector, but the same
approach can be used to show that the equation above gives all the solutions.

This result is very useful if the number of patterns P is manageable, typ-
ically P < 1000. The dimension N now enters in only in storage space and
add/multiplies.

3.6.1 The Rogues Gallery Problem

The Rogue’s Gallery problem, introduced in [46, 29], is an application of the
KL expansion for the low-dimensional characterization of human faces. This
problem is an excellent example of a situation where the direct computation
of the eigenvectors (i.e., solutions of equation (3.21)) which form the optimal
basis is impossible. Instead we must employ the snapshot method and solve
equation (3.36).

For this application an ensemble of 200 digital photographs of human faces
was collected. The population was restricted to be homogeneous, i.e., neither
eyeglasses nor beards were permitted. Each digital image is given as an M x N
array of pixels and in this particular experiment the raw data is captured with
M = N = 256. In addition all of the photographs were aligned to match a
template and adjusted for depth. Furthermore, the data was normalized so
that each image would have uniform lighting on average.

The average face is required to perform the analysis, this is displayed in
Figure 3.3. After the faces where mean subtracted the eigenpictures where
calculated. The first four of these are shown in Figure 3.4. A sampling of
eigenpictures, i.e., numbers 9, 18, 116, 196, are shown in Figure 3.5 to give an
idea of the change in the images as a function of the associated eigenvalue.

To demonstrate the efficacy of the basis for representing the digital images
partial reconstructions retaining 10, 20, 30, 40, 50 and 60 terms are shown in
Figure 3.6. The face being reconstructed is not part of the original data set
of 200 faces.

This example is extended to exploit symmetry properties in Section 4.3. In
addition, a constrast of the linear reconstruction with a nonlinear reconstruc-
tion is discussed in Section 9.3.1.

3.7 THE SINGULAR VALUE DECOMPOSITION AND KL

In this section we re-examine the direct method and the snapshot method
for implementing the Karhunen-Loéve decomposition via the singular value
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Fig. 3.3 The average face.
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Fig. 3.4 The first 4 eigenfaces.
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Fig. 3.5 Top left: eigeface number 9; top right: eigenface 18; bottom left: eigenface
116; bottom right: eigenface 196.
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Fig. 3.6 Eigenface reconstruction. The reconstructions consist of 10, 20, 30, 40, 50
and 60 terms from left to right, top to bottom. The picture in the bottom right
corresponds to the original image.
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decomposition (SVD). The SVD, as described in Section 2.9, is a classical
and powerful tool in numerical linear algebra. Detailed textbook discussions
are available, see e.g., [17, 50]; additional references and theory may be found
in [23]. Here our purpose is to demonstrate that the eigenvector problems
stated in equations (3.21) and (3.36) associated with the direct method snap-
shot method, respectively, fit neatly into the mathematical framework of the
SVD. In particular, we shall see that the left singular vectors are the eigenvec-
tors computed in the direct method, while the right singular vectors are the
eigenvectors computed in the snapshot method. The SVD may also be seen to
be equivalent to what has been referred to as the bi-orthogonal decomposition,
see, e.g., [2].

We begin by constructing a N x P data matrix X out of our ensemble
{x(“)}f:1 of pattern vectors in RN where the columns of X are the pattern
vectors X = [xM] ... [x(F)].

To assist in the interpretation of our results, we will assume that the en-
semble consists of time-dependent vectors. For simplicity we assume that the
spatial variable is 1-dimensional. It should be emphasized that these assump-
tions are for convenience and are not a requirement of the theory. For these
time dependent observations, (X);; = ng ), the column index is the time index
j=1,...,P, and the row index, ¢ = 1,..., N is the spatial index. Thus our
spatio-temporal data matrix

(2)

O (P)

%1) (2) x%P)

x x x

X = > > >
x(,,I,) x(,?,) x(,,P, )

is indexed left-to-right by time and top-to-bottom by space. Note that the
size of this matrix may be enormous in practice and its actual formation may
not be possible due to computer memory limitations. However, this does not
prevent us from applying the mathematics of the SVD.

The transpose of X will be written X7 and is given by

® L0 »0

Ty h )
xT — Zy Z3 TN
2" P zy)

In what follows, it will be useful to write the matrix X7 in terms of its column
vectors. Therefore, we introduce the notation

XT =[yW|...]y"™M]

where yg.i) = xgj ). One might view X7 as a new data matrix where the roles
of time and space have been interchanged.
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The motivation for collecting the data in matrix form comes from the ob-
servation that we may rewrite the ensemble averaged correlation matrix in
terms of X X7. To see this, write out the jk’th element of this matrix

(XXT)j Z 2 W (3.37)

= P(IL’jII:k> (338)

where j,k =1,...,N. In other words,

- X XT T
- exT).

From the above expression, we see that the patterns are being correlated
over the spatial variable and averaged over time. Thus, we define the ensemble
averaged spatial correlation matriz C, of the observations as

1
C,==Xx". (3.39)
P
In an analogous manner we may form the ensemble averaged temporal cor-
relation matriz

1 T
Cr=X"X (3.40)

As before, let’s write out the jk’th element of this matrix

(XTX) Z 2D P (3.41)

= N(Z/j!/k) (3.42)

where j,k =1,..., P. In other words,

%X X =(yy")
so we see that C; is in fact a temporal correlation matrix. Note that the
definition of the ensemble, and hence ensemble average, has changed from
that given above. When determining C, the spatial correlations are averaged
over time while in determining C; the temporal correlations are averaged over
the spatial domain. Hence we will refer to the eigenvectors of C,, as the spatial
eigenvectors and to the eigenvectors of C; as the temporal eigenvectors.

We note that C, is an N x N matrix and the spatial eigenvectors are
solutions of

XXTU =UA, (3.43)
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where the columns of U correspond to the eigenvectors of Cy, ie., U =
[u®]...|[u®™)]. Also, A, is an N x N matrix

A
A2
A, =
A

Similarly, C; is an P x P matrix and the temporal eigenvectors are solutions
of

XTXV =VA; (3.44)
where the columns of V correspond to the eigenvectors of Cy, ie., V =
[vD]...|[v(¥)]. Also, and A; is a P x P matrix

A
A2
A=
AP

We have used the same notation for the eigenvalues of X X7 and X7 X in
view of the following proposition which is a consequence of the fact det(X XT) =
det(X T X):

Proposition 3.2. The non-zero entries of A, and A; are equal.

Hence, the KL spectrum can be determined from computing the eigenvalues
of either C, or C;. Note that the eigenvalues of C, are actually given by the
matrix %Aw and that the eigenvalues of C; are given by the matrix %At.

Now we recast these results in terms of the SVD. We recognize that the
spatial eigenvectors U of the spatial correlation matrix X X7 are exactly the
left-singular vectors of the data matrix X. Also, the temporal eigenvectors V
of the temporal correlation matrix X7 X are exactly the right-singular vectors
of the data matrix X. Thus, by the singular value decomposition theorem 2.4
we may decompose the data matrix

X=uxv? (3.45)
where X is the N x P diagonal matrix given by
> = diag(c™,...,0(,0,...,0)

where g; = v/, i.e., the singular values are the square roots of the eigenvalues
of XXT.
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Given the columns of U for a basis for the data, we have the orthogonal
expansion

x(® = 3" g ul
j=1

Recall that this may be rewritten in terms of matrices as
X=UA

where A is an N x P matrix of expansion coefficients 4 = [a(D|a®)|.. . |a(P)].
Furthermore, since UT = U~!. the expansion coefficients are given by

A=U"TX.

The following propositions provide very useful relationships between the
expansion coeflicients and the eigenvectors.

Proposition 3.3. If X is the matriz of singular values of X and V' the matriz
of associated temporal eigenvectors (right-singular vectors) then the matriz of
expansion coefficients A, i.e., the projections of the data onto the optimal
spatial eigenvectors, is given by

A=3%VT

Proof. By the SVD
X =UxvT.

Multiplying both sides of the relationship by U” and using the fact UTU =1
gives

Ur'x =xv?.
Recognizing A = UTX completes the result which has an extremely useful
interpretation. Namely that the expansion coefficients A are contained in the
temporal eigenvectors, i.e., the right-singular vectors. O

Thus, the time dependent coefficients given by the matrix A, may be com-
puted using two different methods. Firstly, we can compute the spatial eigen-
vectors and the associated projections in the usual fashion. Alternatively, we
can compute these coefficients directly from the temporal correlation matrix.
Usually one approach is significantly more efficient than the other.

The next proposition states that the spatial eigenvectors may be written
as the superposition of data where the appropriate expansion coeflicients are
provided by temporal eigenvectors, i.e., the right-singular vectors. Compare
this result with equation (3.31).

Proposition 3.4.

s
u = 1§00
95 b=
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where j =1,..., rank(X).
Proof. This result also follows directly from the SVD
X=Uuz=v"
XV =U%

where the fact that V is an orthogonal matrix was used. Defining &1, P x N
matrix, as the pseudoinverse of 3 we have

U=Xvz*t

from which the proposition follows. O

The next proposition presents a relation which is in a sense symmetrical
to the previous one. It states that the temporal eigenvectors may be written
as the superposition of data where the appropriate expansion coeflicients are
provided by spatial eigenvectors.

Proposition 3.5.

1L
v = L3, 0w
95 k=1

() _ ()

where j =1,...,7, r = rank(X) and y; as defined above.

Proof. Again, this result follows directly from the SVD

X=uxvT
UvrTx =xv7T
VT =tuTx

where the fact that U is an orthogonal matrix was used. Hence,
Vv=XxTyxzt (3.46)
from which the proposition follows. O

Example 3.1. Recall Example 2.16 where the left and right singular vectors
were computed for the data matrix

1 1
X=|01 XT:(}(;}))
10

The columns of X7 are y = (1,1)7,y® = (0,1)” and y® = (1,0)7.
We now confirm proposition (3.4). To this end, we compute

s
u = 1§00
95 b=
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for u. Evaluating this formula gives

1
u(l) — 7§(‘/§1) x(l) + Vél) x(2))

Recalling v = -(1,1)7 we obtain

V2
1 1
1 1 1
W= _—(—1{ o —
u\’/ = + 1

Iherefore,
1 T
ll(l) =—(2,1,1
y by

which checks.
We now confirm proposition (3.5) by computing

| X
VOSSR S WONC
95 k=1

for v, Recalling u® = %(2, 1,1)T we obtain

ot (1) =5 () 5 ()= (1)

which checks. It is also reassuring to confirm the formula A = XV7 which
provides the spatial expansion coefficients in terms of the temporal eigenvec-
tors. By direct computation

A=UTx

2 1 1

V6 VB L1
=1 0 X -L 0 1
L e,

Vi VB VB

3 3

v§
I\ v v

0 0

According to the proposition, the N x P matrix A = V7 is also found as

/2 0 -1 1/

§
A7)

which agrees with the previous result.
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3.7.1 Translationally Invariant Data

We consider a data set consisting of points {z;} to be translationally invariant
if the spatial domain is periodic and a cyclic permutation of the components
of a given data point generates another element of the data set. In matrix
notation we can consider the (rectangular) matrix X whose rows are the .
There is a group of cyclic permutations of the columns of X, that is the
components of z7 such that which we represent by the circulant matrix {C;}.
Corresponding to each of the C; there is a permutation of the rows of X,
denoted by P;, which rearranges the rows of X into their original order

PXC; =X

Note that Pi_1 = PT. The right singular vectors of X may be determined by
forming X7 X, i.e.,
XTx =clx"xc;

hence
XT'xc;=cfx'x

So the group of circulant matrices commutes with X7 X. Given the C; and
XTX are simple, it follows that they share the same eigenvectors [33]. Since
the eigenvectors of the circulant matrices are sinusoids we conclude that the
right singular vectors are also sinusoids. The fact that the optimal basis
for translationally invariant data is sinusoids is well known. The argument
present here follows [6].

3.8 IMPLEMENTATION WITH MISSING DATA

Now we turn to the problem of using the KL procedure on data sets which
have gaps, or missing components. The algorithm presented here is due to
[13]. The development follows [13], although here we simplify the setting of
the presentation using only discrete vector spaces, rather than function spaces.
We distinguish this extension of the KL procedure for gappy date due to [13]
from the case of noisy data which is developed in the next section.

3.8.1 Estimating Missing Data

Let x € RY an a vector which has a reduced expansion in terms of the KL

basis as
D

X R Xp = E a,ut™

n=1

It follows that only D points of information are required to reproduce the
original vector. Consider now an incomplete, or gappy, copy X of the original



