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Pattern Analysis
as Data Reduction
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Patterns may be found everywhere in nature where there is not total dis-
order. The essence of what we refer to as a pattern is indeed a reflection of
coherence, or organization of information. The tendency for physical systems
to self-organize provides an opportunity to examine such a process through
the resulting patterns. For example, the apparent order observed in finan-
cial markets and weather systems provide ample evidence that our ability to
understand, manipulate, predict and control patterns is extremely important
and potentially rewarding.

1.1 DATA ACQUISITION AND APPLICATIONS

In this section we discuss various problems which naturally lead to the in-
vestigation of high-dimensional data sets, or models. In each instance the
investigator is confronted with a process which is difficult to understand given
the data, or information, associated with the phenomenon is to massive to be
readily digested.

1.1.1 Digital Imaging Systems

A digital photograph or a sequence of digital images may provide detailed
information about many varied phenomena. A framegrabber produces an array
of pixel values which correspond to the light intensity reflected off the image.
A typical output of such a device is a matrix of integer valued gray levels. One
may take any such matrix and concatenate the rows (or columns) to make
a vector. Specifically, consider an M x N array of pixels and let each pixel
have an integer value s;; € {0,1,2,...,254,255] as shown in Figure 1.1. It
is interesting to make a simple count of the number of possible images which
might be generated by such an array. Every pixel has 256 possible values so
we have

Total number of configurations = 256>

Naturally this huge number of configurations is capable of depicting a great
variety of different images. All human faces, all the trees and all the clouds
may be represented (as two-dimensional projections of course) by these pixel
matrices.

We may view the values of the grey levels in an image vector as the co-
efficients of a finite orthogonal expansion with respect to the standard basis.
This description is extremely general, as well it should be to represent both
trees and faces. Yet, we may be presented with a face recognition task and
not be interested in the description of trees at all. In this case the number of
possible vectors (faces) is greatly reduced. In fact the total world population,
say 109, is much less than the number of configurations stated above, even
for modest values of M and N. Thus we are led to the conclusion that the



DATA ACQUISITION AND APPLICATIONS 3

J N

(i,9)

%

Fig. 1.1 The data array.

standard coordinate system is much too general for a specific type of pattern.
See Section 4.1 for a more detailed treatment of this application.

Digital images may represent a family of different patterns or a time-
evolving sequence of highly correlated patterns. In the latter case the quan-
tities of data to be managed are extreme.

1.1.2 Experimental Apparatus

Laboratory experiments of physical phenomena may generate massive data
sets from which the investigator seeks to develop general principles or the-
orys. The analysis of large data sets is a time-honored means of applying
the scientific method. Kepler developed his laws of planetary motion from
examining data associated with orbits.

Wind tunnels are extensively used for simulating air speeds up to Mach 20
and are used for the development of aeropropulsion technology including the
space shuttle and the national aerospace plane. Quantities such as air lift, drag
and temperature are measured via high-volume disk recording systems. It is
not unusual to record 1000 time-dependent variables to monitor the behavior
of the object in the tunnel.

The visualization of temporally evolving fluid flows has reached the point
where highly resolved 3-dimensional velocity and temperature fields may be
captured using particle image velocimetry (PIV).
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Fig. 1.2 Snapshot of an experimental data set.

Funtional Magnetic Resonance Imaging (fMRI) is a new technology capable
of creating 3-dimensional movies of the mind and is capable of identifying
regions of the brain that are involved in performing specific tasks. In a typical
fMRI experiment 2562 images are captured at the rate of 50 images per second.

Financial and economic data sets are routinely exceeding terabyte sizes for
ten year periods. It is an enormous challenge for government to mine such
data for relevant facts to help construct policy.

Method of Delays Often in experiments it is not possible to collect spatially
distributed data sets. Instead, a single probe for instance, may be all that is
available for measuring temperature or velocity. The method of delays was
proposed by [28] as a technique to reconstruct the attractor of a dynamical
system when only limited measurements are available. The generality of this
procedure is rather surprising. It forms the basis of the lagged vector approach
for modeling multi-variable systems where only one observable is available.

For instance, logistic map z,+1 = ra,(1 — z,) is a deterministic rule for
producing a sequence of numbers which appear random, or chaotic, as shown
in Figure 1.3, However, if we plot the n 4 1’th iteration z,41 as a function of
the previous value z,,, we see the nice parabolic structure revealed. Given a
set of apparently random numbers this plotting device, or visualization of the
lagged vector (zy,, zn+1) clearly indicates that the dynamics are the result of
a quadratic nonlinearity. Note that the mapping from =z, to x,41 is readily
approximated numerically while the mapping n to x,.1 is far more difficult,
if not impossible.

Given a single time series of discrete observations y(nét), ¢ = nét the k-
dimensional delay vector is given by

yn = (y((n =k +1)ét), ..., y((n — 1)dt), y(ndt))

Taken’s theorem established that the delay (or lag) vector might have to
be as large as k = 2m + 1 to accurately reconstruct the data on the attractor,
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Fig. 1.3 The top graph displays (¢,z(t)) while the bottom shows the 2-dimensional
lag vector (z(t — 1),z (¢)).

where m is the topological dimension of the attractor [35]. It is interesting to
view this as a data augmentation process given that the one observed variable
is being mapped to many. Certainly this idea fits in naturally to the data
reduction and reconstruction procedures to be considered here.

1.1.3 Numerical Simulations

In science and engineering researchers are often confronted with models of
physical systems which cannot be solved exactly. Often these models are in
the form of systems of nonlinear partial differential equations. Symbolically
we may write

ou
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Fig. 1.4 Numerical simulation of the Navier-Stokes equation.

where D(u) is some nonlinear partial differential operator. While these equa-
tions may be based on coordinate free conservation laws, determining numer-
ical approximations of their solutions involves the introduction of a coordi-
nate system. A classical example of a nonlinear system of partial differential
equations (PDEs) is given by the Navier-Stokes (N-S) equation governing the
motion of an incompressible (divu = 0) fluid

0
p(a—lt1 +(u-V)u) = —Vp +vViu

where u(x,t) = (u(x,t),v(x,t), w(x, t)), ie., 3 spatio-temporally dependent
velocities, x = (z,y, ), p(x,t) is the pressure and v is the dynamic viscosity
??. When the equation for the internal energy 6(x,t) is included the motion
of a fluid is governed by 5 scalar variables. These equations have no known
closed form solution except for very special subcases.

A standard approach for solving such an equation numerically is to ex-
change the PDE with a finite system of ODEs by projecting the PDE onto a
(truncated set) of complete eigenfunctions [6]. Specifically, u(z,t) is approxi-
mated by the truncated expansion

u(z,t) m un (@, ) = Y ar(t)gr().
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Fig. 1.5 The pattern processing paradigm.

Then, by applying the Galerkin procedure, i.e., by requiring

ou
(60, 52 — Dl(uw)) = 0
for k =1,..., N we produce a finite set of ODEs

da
d—:_Fk(ala"'aaN)zo

where again k=1,..., N.

We observe that the introduction of a basis {¢y} introduces a coordina-
tization of the coordinate free PDE. The central issue now becomes how do
we choose a coordinate system such that the number of equations N needed
to reproduce the dynamics of the original PDE is as small as possible? In
general it is not uncommon that a numerical simulation of the Navier-Stokes
equation based on a Fourier-Galerkin spectral method may require a very
large number of terms, e.g., N = O(10°), for each variable. This may be
true even if the dynamics are simple, i.e., periodic. The problem is that the
numerical method must compute the full geometry of phase-space every iter-
ation, rather than simply stepping along a closed curve. This is a reflection
of a non-optimal coordinate system. This fact suggests that the dimension-
ality reduction procedures may provide a means to discover the appropriate
low-dimensional parametrization of a system of differential equations.



8 PATTERN ANALYSIS AS DATA REDUCTION

1.2 DIMENSIONALITY REDUCTION

The common feature of the problems in the preceding section is the fact that
the data is collected in a high-dimensional space and yet represents patterns
which actually may be mapped to a lower dimensional space without loss.
We will refer to this initial space as the ambient space and the artificially
high-dimension as the ambient dimension.

Our goal is to find a new representation for the data which reflects its
actual, or intrinsic dimension. This new representation is obtained via a
dimensionality reducing transformation which produces, in effect, a reduced
space. Hence, we view, in general terms at least, the analysis of patterns as
consisting of the application of a reduction mapping to data for the purposes
of extracting salient information, or features, not readily available by a direct
approach.

Let’s summarize the general features of the approach for pattern analysis
that we will pursue in the sequel. Our patterns may be regarded as members
of a set U C R", where the ambient dimension n is large enough that this
initial space is too cumbersome, or opaque, for a meaningful direct study of
the patterns. Thus we seek a dimensionality reducing mapping G which takes
U to its image, i.e., a set V C R™ of lower dimension m which retains the
essential information about the patterns. Again, what information is essential
may be highly problem dependent.

Symbolically we have

e e
U—-=V — U
Let u € U,v € V. Then by the above we mean G is a mapping from the
high-dimensional space U, i.e.,

G:U—-V

u~ v =G(u).

The need to be able to reconstruct a pattern to accurately resemble the same
or modified pattern in the ambient coordinate system requires that we con-
struct a mapping G717, i.e.,

Gl v-U
v~ u= G (v).

It is implicit in this discussion that the mapping G is injective. Thus, the
composition of mappings produces the identity as

u= (G 'oG)(u)

for all u € U. Similarly,
v=(GoG H(v)
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Fig. 1.6 The dimensionality reduction mapping permits the analysis of data in a
potentially simpler setting.

This approach for dimensionality reduction is summarized in Figure 1.6.

We interpret that the information has been retained if there is a reconstruc-
tion mapping G ! which behaves as the inverse of G on V. This interpretation
can be made more rigorous as follows [10]:

Theorem 1.1. LetU C R*. If G : U — R™ is a bi-Lipschitz transformation,
i.e.,

alx —yll £ I1Gx) - G| < eollx -yl
where 0 < ¢1 < ¢a < 00, then dim U = dim G(U).

If U is smooth m-dimensional submanifold of R® then dim means topolog-
ical dimension. In general, dim is take to be the Hausdorff dimension, see [10]
for details.

Note that this restrictive invertibility condition may not be necessary, as
for instance in many classification problems. However, we take the perspective
that we seek a new coordinate system to represent the data without loss in
some optimal sense. This step may be viewed as a preprocessing step for other
pattern analytic applications such as classification.
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1.2.1 Intrinsic Dimensionality

To this point we have only alluded to the notion of dimension and have not
provided any precise definition. Characterizing the dimensionality of a data
set, except at the most basic level, is surprisingly involved and several def-
initions and measures are available, including basis dimension, topological
dimension, fractal dimension, information dimension, and degrees of freedom
[10]. There is in fact a whole branch of mathematics dedicated to dimension
theory, see [20].

We propose to use the term intrinsic dimension to mean the fewest number
of parameters requires to model the data without loss. For instance, if

u=H(vi,...,um)

for all u € U C R* we say that the intrinsic dimension of the data is m.
This number m may change depending on whether the mapping H is local or
global. In such cases we refer to the global intrinsic dimension or the local
intrinsic dimension.

Basis Dimension. This is the standard defintion in elementary linear algebra
and indicates the number of vectors required to have a basis for the data in the
vector space. Hence, a general digital image with N x M pixels has dimension
N x M since this is the number of vectors required to form a basis for the space.
It might be postulated that a collection of images of faces does not require
the generality of this standard basis and we may suppose that a smaller basis
exists to represent the data. Therefore we say that the intrinsic dimensionality,
or the minimum number degrees of freedom required to characterize the data
set, is smaller than the original ambient or measurement dimensionality.

Topological Dimension. This is the basis dimension of the local linear approx-
imation of the hypersurface on which the data resides, i.e., the tangent space.
For example, if the data set resides on an m-dimensional submanifold it has
an m-dimensional tangent space at every point in the set. For instance, a
sphere has a 2-dimensional tangent space at every point and may be viewed
as a 2-dimensional manifold.

1.2.2 Empirical Mappings

Given the nature of the data, the size of the ambient space, and the way
the data resides in the ambient space are all highly problem dependent it is
appropriate to examine empirical reduction mappings, i.e., mappings which
are data dependent. For example, the Karhunen-Loéve expansion, radial ba-
sis functions, sigmoidal neural networks and clustering schemes are all data
driven. We distinguish these empirical mappings from their analytical coun-
terparts such as the Fourier transform, the wavelet transform and many other
well-known transformations. Semi-analytical mappings, i.e., mappings which
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combine analytical and empirical portions are also an emerging area of inter-
est.

The empirical nonlinear functions G and G, may be found by solving
the interpolation problem [5]. In general, this involves constructing an ap-
proximation function f (x) capable of mapping a collection of input vectors to
a set of associated output vectors.

Given an ensemble of P input vectors {x(“)}ff:l, with each x*) € R*, and
an associated ensemble of P output vectors, {y(“)}ff:l, with each y® € R™,
find a function f : R™ — R™ such that the interpolation condition

f(x(u)) =y (1.1)

is satisfied for all y=1...P.

In practice we seek an approximation f to f which minimizes the interpo-
lating error. ~

For us it is of central interest to construct approximations G, G~ to the
desired the reduction and reconstruction mappings G and G~! with minimum
error and such that the dimension of V is a mimimum. In particular, the
reconstruction error

error = lu — (G~ 0 G)(u)|?

be as small as possible. Typically the problem is further formulated so that
an average error is minimized over many pattern realizations, which we write

error = (Ju — (G—1 0 G)(u)||?).

How we measure the error ||-|| is problem dependent. A related point concerns
the required smoothness of the mappings. We will examine instances where
the mappings are continuous, Lipschitz and continuously differentiable.

1.2.3 On the Nature of Reduction Mappings

We propose to consider the issue of developing transformations in as general
a context as possible. As such, it is useful to consider the totality of possible
types of transformation.

e empirical or analytical
¢ linear or nonlinear

e global or local

¢ well-conditioned

¢ piecewise continuous, continuous, Lipschitz, differentiable...



12 PATTERN ANALYSIS AS DATA REDUCTION

0.4+

0.2

—0.4

9.6

Fig. 1.7 The top graph displays the global sigmoidal function o(z) = (1 +
exp(—32))~' — 0.5 while the bottom graph shows the local Gaussian ¢(z) =
exp(—10z?).

We will be primarily interested in lossless rather than lossy transformations
and deterministic rather than stochastic. In addition, we may consider hybrid
combinations of transformations from any of the types described below.

Given to sets U and V', a mapping f, is said to be a local mapping if it
is defined to act only over subsets domain, ie, fo : So CU — T, C V. A
mapping defined to act over the entire domain, i.e., f : U — V is said to be
global mapping. Global maps include the discrete Fourier transform, the KL
transform and the multilayer perceptron. A mapping is said to be local if only
a subset of the domain contibutes to the image of the map. Gaussian radial
basis functions, bump functions and wavelets are examples local maps.

The nature of the reduction mapping appropriate for a given data set is
a function of the manner in which the data resides in the ambient space. If
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the data is best viewed as a subset of a linear subspace of smaller dimen-
sion than the ambient dimension then one may seek an appropriate change
of basis which reveals this structure. On the other hand, if the data is more
effectively modeled as a sampling of an m-dimensional sub-manifold M, then
it is appropriate to represent the data as a graph from a suitable linear sub-
space to its orthogonal compliment. The former procedure may be viewed
as data encapsulation while the latter procedure may be referred to as data
parametrization.

One can interpret the encapsulation of the data set by a basis as a linear
parameterization u = H(v), i.e., it is implicit that in this case H is restricted
to be a linear mapping; in practice this means H is a matrix. As a result, the
number of parameters required to encapsulate, or span, a data set is typically
significantly larger than the number of dimensions required to nonlinearly pa-
rameterize a data set. Therefore, except in special cases, even an optimal
linear parameterization (i.e., data encapsulation) will not produce a represen-
tation of the data which reflects the intrinsic dimensionality of the data which
resides on a submaifold M.

1231 G global linear, G~ global linear. Data reduction via the encapsu-
lation procedure seeks to prescribe a new basis which can be used to map,
typically via a global linear transformation, e.g. orthogonal or unitary, the
data to a subspace of reduced dimension. Under the assumption that the
reduced data may be perfectly reconstructed via an inverse linear transforma-
tion the new coordinate system may be viewed as encapsulating, or spanning,
the entirety of the data in the new basis. In this setting, every data point in
lies in the span of the new basis; if a component of a newly observed data
point does not lie in this span, it appears as the residual, or error, when the
data is reconstructed.

Given a data set which fills a subspace of the ambient space how is a good,
or even optimal, linear transformation to be found? The Karhunen-Loeve
transform will provide a prototype procedure for empirically constructing an
optimal orthogonal transformation G and associated inverse G”. For further
discussion of this approach see Chapter 3.

1.2.3.2 G global linear, G™' global nonlinear. The parameterization of a
data set may be achieved by determining a new coordinate system which is
the result of a dimensionality reducing mapping v = G(u) € V C R%. The
associated reconstruction mapping v = G~ 1(v) € U C R" takes the data and
maps it back to the original ambient coordinates. Thus, given v is a d-tuple,
G ! provides a global d-dimensional parameterization of the data.

The first architecture we consider for parametrization based reduction is
the case of a global, linear reduction mapping inverted via a global, nonlinear
mapping. This particular case is appealing given Whitney’s (easy) embedding
theorem from differential topology [16] (see also [15]). Paraphrasing, this
theorem says that every m dimensional manifold may be diffeomorphically
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mapped to the Euclidean space of dimension R?™1. Hence the Euclidean
space R?™t! is large enough to contain a diffeomorphic copy of every m-
dimensional manifold [15]. (Whitney’s theorem has also been extended to
fractal sets [32] removing the requirement that the data set lie on a manifold.)

Whitney’s theorem further specifies that the reduced coordinate system
may be obtained via a projection G, i.e., a special global linear mapping,
Naturally the question arises concerning how to obtain good projections in
some sense. In practice, we shall approximate the nonlinear inverse G—!
empirically by fitting data, using, for example, radial basis functions or multi-
layer perceptrons.

We will return to the basic questions concerning this particular reduction
approach in Chapter 9 after developing the necessary groundwork in Chapter
7. The methods of Chapter 8 will provide further tools for this problem.

1.2.33 G global nonlinear, G~ global nonlinear. When both G and G~!
are fully nonlinear it may be possible to improve upon the Whitney limit as
discussed above where the reduction mapping is linear. For example, con-
sider the special (but important) case of data residing on a closed curve in a
high-dimensional space. This curve may always be mapped to a circle in the
plane (the sets are homeomorphic) so d = 2 while the object itself is a one-
dimensional manifold. Whitney’s theorem suggests that there are some circles
which may not be projected to the plane without some loss, i.e., d = 3 dimen-
sions may be required. For further discussion of this approach see Section 9.2
in Chapter 9.

Note that the improvement in reduced dimension obtained by using the
nonlinear reduction over the linear reduction (with nonlinear reconstruction)
will never be greater than a factor of two.

1.2.3.4 G local linear, G~ local nonlinear. For locally defined mappings G
and G~! it is possible to obtain a reduction of the data to the topological
dimension m [15]. The nonlinearity of G ! reduces the number of local regions
required to reconstruct M to any desired accuracy.

Specifically, given that the data lies on a submanifold M of R"®, we know
that it can be represented locally everywhere as the graph of a smooth func-
tion. In this situtation there is a locally invertible, linear projection of M
into R™. In our context, this reduces the data to its intrinsic dimension. As-
sociated with this local linear reduction, there is an inverse mapping, which
is generally nonlinear [15]. Thus, a local partitioning of the data may be
obtained to generate mappings which locally reproduce the identity, while
achieving a reduction to the topological dimension m. Hence, in theory, the
local approach described above characterizes the data optimally well. For
further discussion of this approach see 9.4.
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1.2.35 G local linear, G™' local linear. This case permits a fast reduction
scheme which requires a dense partitioning of the ambient space to approach
the quality of reduction possible when a nonlinear inverse is used.

1.2.36 Summary. In view of the above remarks we see that the nature of the
mappings G, G~ ! plays a central role in the reduction procedure. If the data
set resides on an m-dimensional manifold in an ambient space of n-dimensions
then the reduction capacity of the various methods can be compared with
Whitney’s limit d = 2m + 1 and the optimal reduction to the m dimensional
manifold which is attainable locally. The spectrum of reduction dimensions
is then
n>n>2m+1>m' >m

where n’ is the reduction of a global linear transformation and m’ is the
reduction dimension of a global nonlinear transformation, in general. More
will be made of these comparisons in Chapter 9. In an absolute sense, we view
the reduction mapping as optimal if the representation involves only a number
of parameters equivalent to the intrinsic dimensionality of the data. Typically
this optimal reduction is only possible for local mappings. Of course, given
well-defined criteria, we will refer to mappings as optimal over a given class,
e.g., orthogonal transformations.

1.3 ON THE NATURE OF PATTERNS IN DATA

In this section we briefly outline the properties of the various types of pattern
which are ubiquitous in nature. We also consider the nature of the data which
is a measure of the pattern.

1.3.1 Pattern Types

It will be convenient to distinguish between three broad classes of patterns,
namely temporal, spatial and spatio-temporal patterns.

¢ On a worldwide scale, the temperature over a 24 hour period at Denver
International Airport is a temporal pattern T'(t).

o The temperature distribution over the entire surface of the earth at any
given instant is a spatial pattern T'(x).

e The evolution of the earth’s surface temperature is a spatio-temporal
pattern T'(x,t).

We consider all data which is generated by an equation, or set of equations,
to be deterministic. In the case of modeling, we assume that there exist
explicit mathematical equations governing the system’s evolution. We now
present basic examples of deterministic data.
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Fig. 1.8 Left: The peridoic curve (cost,sin2t). Right: the aperiodic curve

(cost,sin v/5t).

Example 1.1. Periodic Data. Data is said to be periodic with period T if
the relation
z(t) = z(t + nT)

holds for n =0,+£1,%2,... and all ¢ € R If the independent variable is time
then the function is said to be temporally periodic and if the independent
variable is space then the function is said to be spatially periodic. A simple
example of a periodic function is given by z(t) = cos(t) + sin(2¢). If the data
is time-discrete then the definition of periodicity becomes zy, = @y nr for
allm,n € Z.

Example 1.2. Almost Periodic Data. A function is almost periodic if it is
made up of the superposition of 2 or more periodic functions whose frequencies
are almost commensurate. If the ratio of the frequencies is rational, then the
function falls into the category of periodic function as above. In other words,
for an almost periodic function the relationship z(t) = x(t+nT) is not satisfied
for any finite value of T', i.e., the period of z(¢) is infinitely long. An example
of an almost periodic function is provided by

x(t) = cos(2t) + sin(v/5t).

See Figure 1.8 to compare this with a periodic function.

Often it may not be an easy question to determine whether a function is
periodic or almost periodic. We will return to these issues in our study of
Fourier analysis.

Example 1.3. Non-periodic data. If a function z(t) is neither periodic nor
almost periodic we refer to is as non-periodic. An example of a non-periodic
functional relation is given by

z(t) = expt|.
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Example 1.4. Chaotic data. The distinction between deterministic and stochas-
tic data becomes somewhat blurred when data produced by an explicit set of
mathematical equations appears to be random. This behavior of nonlinear
systems reflects the mixing properties of deterministic models. Specifically,
particles which are initially close together in phase space diverge at an expo-
nentially fast rate.

Example 1.5. Stochastic data. Data is said to be stochastic if no mathemati-
cal equations exist to model the data production. It is useful to distinguish be-
tween what are considered to be truly random data, e.g., the interval between
emissions from a radioactive substance, and data which are only modeled as
random because an attempt to model them explicitly proves too difficult.

The main dichotomy between deterministic and stochastic data should not
be viewed as rigid. Sometimes it is convenient when one is confronted with the
study of extremely complex spatio-temporal behavior to model the data as
stochastic while fully believing that the underlying processes are deterministic.
While strictly speaking chaos is deterministic, it serves to bridge that gap
between random and stochastic models. Distinguishing between chaotic and
stochastic phenomena is still an active area of research.

1.3.2 Continuous and Discrete Data

Consider the function being measured v(t) to be defined on the domain ¢ €
T C R taking values in v(t) € VR. We distinguish between the possibilities
that the values assumed in T or V' may be discrete, i.e. come from a finite
set, or continuous, i.e, are drawn from a continuum.

e both ¢ and v are continuous, e.g., the sound of an orchestra.
e { is discrete and v is continuous, e.g., currency exchange rates.

e both t and v are discrete, e.g., digital images.

Data Sampling We note that it is often the case that data to be analyzed
is actually discrete-time and/or -space. In some cases, e.g., for computer
imaging, that the data is digital, i.e., both the dependent and independent
variables are discrete.

Discrete sampling also permits the passage from continuous to discrete data
sets. For example, if (£, t) is a continuous spatio-temporal pattern then we
obtain the discrete-time/space variable

mgk) = z(JAE, KAL)

If we further assume that the spatial domain has finite extent, ie., 7 =1... N,
then we may view the discretized data as an ensemble of pattern vectors
{x(k)}kP:1 each lying in a vector space RV where dimx*) = N may be large.
Often we will compile this data into an N x P data matriz X = [x]---|x®)].
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The starting point of the analysis is now a collection of vectors lying in a
vector space, possibly of high dimension. An ensemble of spatial patterns may
be viewed geometrically as clouds or clusters of points with no temporal line
connecting or ordering them. A dynamically evolving pattern on the other
hand has a unique time line, or trajectory, connecting the points in space.

Approaches for the analysis of patterns can be divided into two groups,
probabilistic and deterministic. We will be concerned almost exclusively with
techniques which fall into the latter category. Our emphasis will be centered
on methodologies which all serve as approaches for data reduction and/or
function approximation. For statistical approaches to pattern analysis see,
eg., [8 11, 9].

Problems

1.1 Human beings are amazing information processors. We continuously
process phenomonal quantites of data using many naturally developed or
physiolgically inherent pattern compression schemes.

(a) List five ways the human brain processes sensory inputs in a fashion
which might be interpreted as dimensionality reduction.

(b) Estimate the amount of information (in bytes) a digital television with
resolution 640 x 480 produces in one minute assuming a refresh rate of
60 images/second. For a color image assume each pixel is encoded by 3
bytes. This simple calculation will give you an immediate idea of what
is meant by massive quanitities of data.

1.2 Numerically integrate the Lorenz equations

jﬁl == a(—a:l —+ 332) (12)
jﬁg = Trx] — Ty —T1X3
T3 = —bwg + x122

for a = 10,7 = 28,b = 8/3. Using the resulting data prepare the following
plots:

(a) x(t),y(t), z(¢) all as a function of ¢.

At)) as a graph in R?.

At), z(t — 2At)) as a graph in R3.
At), y(t — 2At)) as a graph in R®.
)

At), z(t — 2At)) as a graph in R3.
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Experiment with various values of At. Comment on these graphs in view of
the remarks in Section 1.1.2.

1.3 Consider the m x n real matrix A. By considering the action of A on an
element z of R" | argue whether it is an example of a global or local mappping.

1.4 Describe how local mappings may be used to construct a global map-
ping.
1.5 Consider the action of an m x n matrix A.

1.5.1. Under what conditions is this mapping injective, surjective and bi-
jective? (Specify the domain and range of A.)

1.5.2. Provide an example of a specific m # n matrix A and subspace U
such that A is bijective. (Hint: think geometrically).

1.6 Consider a torus residing in a 3-dimensional ambient space. What is
the

(a) basis dimension
(b) local dimension

(c) intrinsic dimension
1.7 Let U CR® and G : U — R™. Given only

alx -yl < Gx) - Gyl
1G(x) = G(y)ll < ealx -yl

where 0 < ¢1 < ¢g < o0, i.e., the function is not bi-Lipschitz, show examples
of mappings which do not preserve the dimension of U.
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