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DRACKNs versus Covers of Strongly Regular Graphs
The cube is a DRACKN, a double cover of the complete graph K4

The dodecahedron is an antipodal five-class (diameter 5)
distance-regular double cover of the Petersen graph.
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Jason Williford’s Tables: feasible parameters for cometric
schemes

http://www.uwyo.edu/jwilliford/

Here is a snapshot of Jason’s table for d = 4, Q-bipartite
(two angles, one of which is 90◦)
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Sample Challenges: 4-class Q-Bipartite Association
Schemes

Problem: Find 1288 lines in R23 with two angles, arccos(1/3) and
π/2, in the configuration of the strongly regular graph
srg(1288, 495; 206, 180) coming from M24/2.M12

Problem: Find 2048 lines in R24 with two angles, arccos(1/3) and
π/2, in the configuration of the strongly regular graph
srg(2048, 759; 310, 264) coming from 211.M24/M24

Problem: Find 2232 lines in R24 with two angles, arccos(1/3) and
π/2, in the configuration of a strongly regular graph
srg(2232, 828; 339, 288)
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Sample Challenges: 4-class Q-Bipartite Association
Schemes

Problem: Find 1288 lines in R23 with two angles, arccos(1/3) and
π/2, in the configuration of the strongly regular graph
srg(1288, 495; 206, 180) coming from M24/2.M12

Exists
Problem: Find 2048 lines in R24 with two angles, arccos(1/3) and
π/2, in the configuration of the strongly regular graph
srg(2048, 759; 310, 264) coming from 211.M24/M24

Open
Problem: Find 2232 lines in R24 with two angles, arccos(1/3) and
π/2, in the configuration of a strongly regular graph
srg(2232, 828; 339, 288)
Ruled out today
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Double Covers of Strongly Regular Graphs
A graph Γ is strongly regular with parameters (v , k ;λ, µ) if Γ is a
k-regular graph on v vertices with the additional properties

I any two adjacent vertices share λ common neighbors

I any two non-adjacent vertices share µ common neighbors

Example: Complete multipartite graph wKm :
srg(wm, (w − 1)m; (w − 2)m, (w − 1)m).
We seek a set of lines through the origin with two angles
“governed” by a strongly regular graph Γ in the sense that there is
a bijection from the lines to the vertices of Γ such that a pair of
lines form angle α iff the corresponding vertices are adjacent in Γ.

Theorem (LeCompte,WJM,Owens (2010))

When the underlying strongly regular graph is complete
multipartite, Q-bipartite 4-class association schemes are
(essentially) in one-to-one correspondence with real mutually
unbiased bases.
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A Toy Spherical Code
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A Toy Spherical Code and its Gram Matrix

X = 1√
3


1 1 −1
1 −1 1
1 −1 −1
−1 1 1
−1 1 −1


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A Toy Spherical Code and its Gram Matrix

Matrix of inner products G = XX>

X =
1√
3


1 1 −1
1 −1 1
1 −1 −1
−1 1 1
−1 1 −1

 G =
1

3


3 1 −1 −3 −1
1 3 1 −1 −3
−1 1 3 1 −1
−3 −1 1 3 1
−1 −3 −1 1 3


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A Toy Spherical Code and its Gram Matrix

We easily compute the entrywise square of the matrix G and its
entrywise cube:

G◦G= 1
9



9 1 1 9 1

1 9 1 1 9

1 1 9 1 1

9 1 1 9 1

1 9 1 1 9


, G◦G◦G= 1

27



27 1 −1 −27 −1

1 27 1 −1 −27

−1 1 27 1 −1

−27 −1 1 27 1

−1 −27 −1 1 27


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Taking the Schur closure
This is a spherical 3-distance set. So the vector space

A = 〈J,G ,G ◦2,G ◦3, . . .〉 = 〈J,G ,G ◦2,G ◦3〉

admits a basis of 01-matrices: A0,A1,A2,A3 =
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 ,


0 1 0 0 0

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

0 0 0 1 0

 ,


0 0 1 0 1

0 0 0 1 0

1 0 0 0 1

0 1 0 0 0

1 0 1 0 0

 ,


0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0


But observe that

G 2 = 1
9



21 11 −7 −21 −11
11 21 7 −11 −21
−7 7 13 7 −7
−21 −11 7 21 11

−11 −21 −7 11 21


does not belong to this space: A is not closed under multiplication.
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Entrywise Operations on PSD Matrices

For a Hermitian matrix G , write G � 0 to indicate that G is
positive semidefinite: x>Gx ≥ 0 for all x.

Since G � 0, we know that G ◦ G � 0, G ◦ G ◦ G � 0, etc.

If we apply f (t) = 1
2

(
3t2 − 1

)
entrywise to G , the resulting matrix

remains positive semidefinite.

If we instead apply g(t) = t2 − 2 entrywise to G , we obtain a
matrix with eigenvalues 0, 0, 16/9 and

−61±
√

6473

18
≈ 1.080830908, −7.858608686

(So what’s special about f (t) = 1
2 (3t2 − 1)?)
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Gegenbauer Polynomials

For each dimension m, we have a basis {Qm
` (t)}∞`=0 for R[t] given

by the three-term recurrence

Qm
` (t) =

(2`+ m − 4) t Qm
`−1(t)− (`− 1) Qm

`−2(t)

`+ m − 3
` ≥ 2,

Qm
0 (t) = 1 Qm

1 (t) = t.

These are the Gegenbauer polynomials.

Note that Qm
` (1) = 1 for all ` ≥ 0. We will suppress the

superscript m if it is clear in the context.

These are the zonal spherical harmonics: for each y ∈ Rm,
F : x 7→ Qm

` (〈x, y〉) satisfies

∆ F =
∂2F

∂x21
+ · · ·+ ∂2F

∂x2m
= 0

William J. Martin Schönberg’s Theorem
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Gegenbauer Polynomials

Here are the first six Gegenbauer polynomials for spherical codes in
dimension m.

Q0(t) = 1, Q1(t) = t, Q2(t) =
mt2 − 1

m − 1
,

Q3(t) =
(m + 2)t3 − 3t

m − 1
,

Q4(t) =
(m + 4)(m + 2)t4 − 6(m + 2)t2 + 3

m2 − 1
,

Q5(t) =
(m + 6)(m + 4)t5 − 10(m + 4)t3 + 15t

m2 − 1
.

William J. Martin Schönberg’s Theorem
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Schönberg’s Theorem (specialized)

Let m be a fixed positive integer. For a finite set of unit vectors
X ⊂ Sm−1, let GX denote the Gram matrix of X .
A function f : [−1, 1]→ R is positive definite on Sm−1 if, for every
finite subset X , f applied entrywise to GX results in a positive
semidefinite matrix; we write f ◦ (GX ) � 0.

Theorem (Schönberg (1942))

Fix m ∈ Z+. A polynomial f : [−1, 1]→ R of degree d is positive
definite on Sm−1 if and only if f (t) =

∑d
`=0 c`Q

m
` (t) for

non-negative constants c`.

In particular, Qm
` (t) is a positive definite function for any choice of

m and `.

William J. Martin Schönberg’s Theorem
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Cones

Let G = GX be the Gram matrix of a finite subset X of Sm−1.
Schönberg’s Theorem implies that the map

R[t]→ A = 〈J,G ,G ◦ G , . . .〉

given by f (t) 7→ f ◦ (G )

maps the cone generated by the Gegenbauer polynomials into the
positive semidefinite cone of A.

f (t) =
n∑

`=0

c`Q
m
` (t)

c` ≥ 0 ∀ ` ⇒ f ◦ (G ) � 0

This can be used to give powerful constraints on spherical codes via
semidefinite programming. (Wei-Hsuan Yu talked at WPI on this.)

William J. Martin Schönberg’s Theorem
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A More Interesting Spherical Code
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Our Second Spherical Code and its Gram Matrix

X = 1√
3



1 1 −1
1 −1 1
1 −1 −1
−1 1 1
−1 1 −1
−1 −1 1


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−1 1 1
−1 1 −1
−1 −1 1

 G =
1

3



3 1 −1 −3 −1 1
1 3 1 −1 −3 −1
−1 1 3 1 −1 −3
−3 −1 1 3 1 −1
−1 −3 −1 1 3 1

1 −1 −3 −1 1 3


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Our Second Spherical Code and its Gram Matrix

We easily compute the entrywise square of the matrix G and its
entrywise cube:

G◦G= 1
9



9 1 1 9 1 1

1 9 1 1 9 1

1 1 9 1 1 9

9 1 1 9 1 1

1 9 1 1 9 1

1 1 9 1 1 9


, G◦G◦G= 1

27



27 1 −1 −27 −1 1

1 27 1 −1 −27 −1

−1 1 27 1 −1 −27

−27 −1 1 27 1 −1

−1 −27 −1 1 27 1

1 −1 −27 −1 1 27


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The Bose-Mesner Algebra of the Hexagon

This is a spherical 3-distance set. So the vector space

A = 〈J,G ,G ◦2,G ◦3, . . .〉 = 〈J,G ,G ◦2,G ◦3〉

admits a basis of 01-matrices: A0 = I , A1,A2,A3 =

0 1 0 0 0 1

1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 0 1 0

0 0 0 1 0 1

1 0 0 0 1 0

 ,


0 0 1 0 1 0

0 0 0 1 0 1

1 0 0 0 1 0

0 1 0 0 0 1

1 0 1 0 0 0

0 1 0 1 0 0

 ,


0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0


This space is closed under matrix multiplication. So we have a
Bose-Mesner algebra, an association scheme.

William J. Martin Schönberg’s Theorem
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Bose-Mesner Algebras

A vector space of v × v matrices A is a Bose-Mesner algebra if

I it is closed under conjugate transpose (e.g., all matrices are
symmetric)

I it is closed under (ordinary) multiplication and contains I

I it is closed under Schur/Hadamard (entrywise) multiplication
and contains J

Two bases:
{A0, . . . ,Ad} {E0, . . . ,Ed}

Ai ◦ Aj = δi ,jAi EiEj = δi ,jEi

AiAj =
∑d

k=0 p
k
ijAk Ei ◦ Ej = 1

v

∑d
k=0 q

k
ijEk

William J. Martin Schönberg’s Theorem
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Association Schemes: The Spherical Code Viewpoint

For today, a (commutative) association scheme is a set X of
distinct unit vectors in Cm for some m whose (Hermitian) Gram
matrix G = GX has the property that the vector space

A = 〈J,G ,G ◦2,G ◦3, . . .〉

is closed under matrix multiplication.

The association scheme is cometric (or Q-polynomial) with respect
to X if, for each r and s (r ≤ s),

G ◦rG ◦s ∈ 〈J,G ,G ◦2, . . . ,G ◦r 〉

Note: every commutative association scheme arises in this way.

William J. Martin Schönberg’s Theorem
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The structure constants of the structure constants are the
structure constants

Bose-Mesner algebra A admits basis {E0, . . . ,Ed} with
EiEj = δijEi and

Ei ◦ Ej =
1

|X |

d∑
k=0

qkijEk

Define

L∗i =


q0i0 q0i1 q0i2 · · · q0id
q1i0 q1i1 q1i2 · · · q1id
...

...
...

. . .
...

qdi0 qdi1 qdi2 · · · qdid


Then

L∗i L
∗
j =

d∑
k=0

qkijL
∗
k

William J. Martin Schönberg’s Theorem
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Two key isomorphisms

The linear map from A to the space of (d + 1)× (d + 1) matrices
that sends Ai to Li = [pki ,j ]k,j is a ring (algebra) homomorphism

AiAj 7→ LiLj

The map φ∗ from A to the space of (d + 1)× (d + 1) matrices
that sends

φ∗(Ei ) =
1

|X |
L∗i where L∗i = [qki ,j ]k,j

extended linearly, is an algebra monomorphism:

φ∗(M ◦ N) = φ∗(M)φ∗(N)

So (A,+, ◦) is isomorphic to the subalgebra 〈L0, . . . , Ld〉.

William J. Martin Schönberg’s Theorem
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The Map φ∗ and Cones

We are thinking about

φ∗(Eh) =
1

v
L∗h where L∗h = [qih,j ]i ,j

extended linearly.

φ∗(M ◦ N) = φ∗(M)φ∗(N)

Lemma
The map φ∗ sends the positive semidefinite cone of A bijectively to{

d∑
i=0

ciL
∗
i

∣∣∣∣∣ c0, c1, . . . , cd ≥ 0

}

William J. Martin Schönberg’s Theorem
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Schönberg’s Theorem (specialized)

This leads to the following theorem:

Theorem
Let (X ,R) be an association scheme with minimal idempotents
E0, . . . ,Ed and matrices of Krein parameters L∗0, . . . , L

∗
d . Fix some

Ei , 0 ≤ i ≤ d, and let mi := rank (Ei ). Then for any choice of
` > 0, there exist non-negative constants θ`j , 0 ≤ j ≤ d, such that

Qmi
` ◦

(
|X |
mi

Ei

)
=
∑
j

θ`jEj ; Qmi
`

(
1

mi
L∗i

)
=

1

|X |
∑
j

θ`jL
∗
j .

(1)

The eigenvalues of Qmi
` ◦

(
|X |
mi

Ei

)
are θ`0, . . . , θ`d where θ`j is

non-zero only if Ej is contained in the Schur subalgebra generated
by Ei .
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Did we accomplish anything?

I We are looking for a spherical code X and want to apply
Schönberg

I In the case X generates an association scheme, we must test
if a matrix lies in the psd cone of a Bose-Mesner algebra A

I Even though we don’t know the matrices in A, we know their
entries from the parameters

I So we instead apply φ∗ and check if we are in the cone of
{L∗0, . . . , L∗d}

I We only need to consider the first column (column “zero”) of
φ∗(f ◦ (Ej))

I We only need to consider f (t) ∈ {Q0(t),Q1(t),Q2(t), . . .}
I But how far out should we check?
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A Really Nice Kodalen Theorem

View |X |
mj

Ej as the Gram matrix of a spherical code.

Consider the |X | (or |X |/2) lines spanned by these vectors and let
λ∗ = cos(θmin), the cosine of the smallest angle formed. (Assume
this is the smallest angle of the spherical code, for convenience.)
Define

`∗ =

⌈
ln
[
(1 + (λ∗)2)|X |(|X | − 1)

]
−2 ln(λ∗)

⌉
As long as (λ∗)2 ≥ `∗/(`∗ + mj − 2) we have

Q
mj

`

(
1

mj
L∗j

)
≥ 0

for all ` ≥ `∗.
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The Krein Array

Suppose A is a Bose-Mesner algebra with Q-polynomial ordering

E0,E1, . . . ,Ed

of its primitive idempotents. Then L∗1 is irreducible tridiagonal. It
is customary to write

L∗1 =


0 b∗0
1 a∗1 b∗1

c∗2 a∗2 b∗2
. . .

. . .
. . .

c∗d a∗d


This is recorded in the Krein array:
ι∗(X ,R) =

{
b∗0, b

∗
1, . . . , b

∗
d−1; 1, c∗2 . . . , c

∗
d

}
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New Feasibility Conditions for Cometric Association
Schemes

Theorem
Suppose we have a feasible parameter set for a cometric
association scheme with Krein array
ι∗(X ,R) =

{
m, b∗1, . . . , b

∗
d−1; 1, c∗2 . . . , c

∗
d

}
where m > 2. Then

the scheme is realizable only if

(iii) (a∗1)2 + b∗1c
∗
2 ≥

2m(m−1)
m+2 ,

(iv) (a∗1)2 + 2a∗1a
∗
2 + c∗2q

2
22 ≥

4m(m−2)
m+4 ,

(v) 6m(m−1)(m−4)
(m+4)(m+6) +

(3a∗1(a∗1+a∗2)+c∗2 q
2
22)b∗1 c∗2 +(a∗1)

4

m ≥
(7m−18)

(
(a∗1)

2
+b∗1 c

∗
2

)
m+6 ,

(v)2
∑3

i=1

(
b∗i c
∗
i+1 + a∗i

∑3
j=i a

∗
j

)
≤ 3(3m−2)

m+6 .
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New Feasibility Conditions for Cometric Association
Schemes

The conditions get more technical as we consider Qm
` (t) for

` = 5, 6:

16m(m−1)
(m+4)(m+8) +

(a∗1)
4
+(3a∗1(a∗1+a∗2)+c∗2 q

2
22)b∗1 c∗2

(m−2)m ≥
12
(
(a∗1)

2
+b∗1 c

∗
2

)
m+8

If a∗1 > 0, then

(a∗1)2 + b∗1c
∗
2

(
2 +

a∗2
a∗1

)
≥ 4m(2m−3)

m+6

(a∗1)2 + 2a∗1a
∗
2 − (a∗2)2 + 2c∗2q

2
22 +

b∗2 c
∗
3 (a∗3−a∗1)−ma∗2

a∗1+a∗2
≥ 6m(m−4)

m+6
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Non-Existence Results for Cometric Schemes

Using these lists, we find nine 3-class primitive cometric schemes
and 11 4-class Q-bipartite schemes which are ruled out by these
inequalities. For each, here are (|X |,m) where |X | is the number
of points and m = rankE1 is the dimension.

I 3-class primitive schemes ruled out

{(441, 20), (576, 23), (729, 26), (1015, 28), (1240, 30),

(1548, 35), (1836, 35), (1944, 29), (1976, 25)} .

I 4-class Q-bipartite schemes

{(4464, 24), (4968, 27), (5280, 30), (5436, 27), (6148, 29),

(8432, 31), (9984, 32), (594, 9), (7776, 27), (8478, 27), (9984, 24)}
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Why Association Schemes?

I efficiency in statistical experiments and coding theory

I the center of the group algebra of any finite group is a
commutative a.s.

I distance-regular graphs (cubes, Hamming, Johnson,
Grassmann, dual polar spaces, cages, generalized polygons,
DRACKNs, . . . )

I tight spherical designs and extremal codes

I every spin model for knot invariants comes from a
Bose-Mesner algebra

I linked simplices, real mutually unbiased bases

I and more!
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The End

Thank you for listening. I welcome questions.

Jennifer and I just ripped up some dead lawn to build a succulent
garden (such is the “vacation week” in the age of Covid)
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