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Schoénberg’s Theorem and Association Schemes

DRACKNSs versus Covers of Strongly Regular Graphs
The cube is a DRACKN, a double cover of the complete graph K,

antipodal

 ——
double cover
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Schoénberg’s Theorem and Association Schemes

DRACKNSs versus Covers of Strongly Regular Graphs
The cube is a DRACKN, a double cover of the complete graph K,

antipodal

—_—
double cover

The dodecahedron is an antipodal five-class (diameter 5)
distance-regular double cover of the Petersen graph.

antipodal
- WPI
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chonberg’s Theorem and Association Schemes

Jason Williford's Tables: feasible parameters for cometric

schemes
http://www.uwyo.edu/jwilliford/

Here is a snapshot of Jason's table for d = 4, Q-bipartite
(two angles, one of which is 90°)

Parameters (3| v [m1 Krein Array multiplicities valencies 2(';” P DRG Quotient Hyp| Comments
BON Thim
@6 || |6 | (65207125 11571856) 1614156 11020100 | - 01234  {1063.1:136.10} 211036 o
07> [1[70 [7 | (7649710772 12110727} 17202814 11636161 |- 01234 (169411 49.16) 351668 [FS [ 184
6. Doubly
Subtended
@e 7|6 (659123,13236) 16203015 12030201 |- | - <36,1566> R e
Latin Square
ype
<67 [+[126 [7 | (76499358 114P218TY 17275635 el [ | - <6330.13,15 B
Halved B-cube,
<1288 |1[128 | 8 (8765:1238) 18285635 12870281 |- 01234| (281561161528} <64281212> | FS | Latin Square
Type
<301 [+ [132 [T [{11,10242727,11/5; 1 55727 4405113 | 111545511 Tasa0ast |- | - <6620,104> [FS Wit 5-1261)
{12,11256/25 36/11; Gavrilyuk,
212> |- 200 [12 ety 112758824 16666661 | - | - <10033.149> e
QM0% [+[240 [ 8 732056, 18528) 183511284 156126561 |- | - <12036.2824> E8
Q4015> [+[240 [15 | {15,142572,5; 152,101} TIS8410535 | 163112651 |- | - <20562824> [ FS | NO+82)
Doubly
. Subtended
240185 [+|240 |18 | {18.17.72/5.6:118/5.12,18) 1188510234 | 15113651 |- | - <120511824>  [Fs
of GQ@.16)
29221> |- (252 |21|  {21204937; 1,143,1421) 1219010535 | 145160451 | - 01234| (45329,1:193245) <12645,12,18> Zneend
260.13> [7[260 [13 [{13,12,169/15,13/3; 1.26/15,265.13) | 1,1390,117,39 18I968L1 |- | - <13048.20.16>
028> [7[308 |28 [(28.27,2451,1475; 1,6311,70528) | 128,132,262 | 172162720 [ - | - <154,7226,40>
<2436 |- (324 |36 {363527,6:19.3036) 13614012621 | 156210561 | - 01234| {5645.12.11,124556) |  <16256,1024> e
ST21> [7[378 [21 | (21201478372 121835221y | 12116016828 | 1128120128, | - <I896027.15>
380.15> [7[380 (15 [{15.14,250/19,4577; 135719.6077.15) | 1LIS.114,17575 | 1105,168.105,1 [ - | - <19084,3836> _
S021> [7[392[21 (21203529 1721221} 12112017575 | 175240050 [ - | - <19675,26.30> WPI
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Schoénberg’s Theorem and Association Schemes

Sample Challenges: 4-class Q-Bipartite Association
Schemes

Problem: Find 1288 lines in R?3 with two angles, arccos(1/3) and
/2, in the configuration of the strongly regular graph
srg(1288,495; 206, 180) coming from Mg /2. M2

Problem: Find 2048 lines in R?* with two angles, arccos(1/3) and
7/2, in the configuration of the strongly regular graph
srg(2048,759; 310, 264) coming from 2. Moy /Moy

Problem: Find 2232 lines in R?* with two angles, arccos(1/3) and
7/2, in the configuration of a strongly regular graph
srg (2232, 828; 339, 288)

WPI



Schoénberg’s Theorem and Association Schemes

Sample Challenges: 4-class Q-Bipartite Association
Schemes

Problem: Find 1288 lines in R?3 with two angles, arccos(1/3) and
7/2, in the configuration of the strongly regular graph

srg (1288, 495; 206, 180) coming from Mas/2.Mi2

Exists

Problem: Find 2048 lines in R?* with two angles, arccos(1/3) and
/2, in the configuration of the strongly regular graph
srg(2048,759; 310, 264) coming from 2. Moy /Moy

Open

Problem: Find 2232 lines in R?* with two angles, arccos(1/3) and
/2, in the configuration of a strongly regular graph
srg(2232,828; 339, 288)

Ruled out today
WPI
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Schoénberg’s Theorem and Association Schemes

Double Covers of Strongly Regular Graphs
A graph T is strongly regular with parameters (v, k; A, u) if [ is a
k-regular graph on v vertices with the additional properties
P any two adjacent vertices share A common neighbors
» any two non-adjacent vertices share y common neighbors

Example: Complete multipartite graph wK, :

srg(wm, (w — 1)m; (w — 2)m, (w — 1)m).

We seek a set of lines through the origin with two angles
“governed” by a strongly regular graph I' in the sense that there is
a bijection from the lines to the vertices of I such that a pair of
lines form angle « iff the corresponding vertices are adjacent in I,

Theorem (LeCompte, WJM,Owens (2010))

When the underlying strongly regular graph is complete

multipartite, Q-bipartite 4-class association schemes are

(essentially) in one-to-one correspondence with real mutually o
. WPI

unbiased bases.
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A Toy Spherical Code
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A Toy Spherical Code
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A Toy Spherical Code and its Gram Matrix

1 1 -1

1 -1 1

X =1 1 -1 -1
3

‘[—1 1 1

-1 1 -1
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A Toy Spherical Code and its Gram Matrix

Matrix of inner products G = XX T

1 1 -1 3 1 -1 -3 -1

1 1 -1 1 1 1 3 1 -1 -3
X=— 1 -1 -1 G=-]-1 1 3 1 -1
V3 -1 1 1 3 -3 -1 1 3 1

-1 1 -1 -1 -3 -1 1 3

WPI



A Toy Spherical Code and its Gram Matrix

We easily compute the entrywise square of the matrix G and its
entrywise cube:

9 1 1 9 1 27 1 -1 —271 -1
1 9 1 1 9 12 1 -1 21
GoGzé 1 1 9 1 1|, GoGoG=4| _; 1 27 1 -1
9 1 1 9 1 27 -1 1 27 1
1 9 1 1 o9 1 27 -1 1 27

WPI



Taking the Schur closure

This is a spherical 3-distance set. So the vector space
A=(J,G,G? GS,..)=(J,G,G% G

admits a basis of 01-matrices: Ap, A1, Az, A3 =
1 0 0 0 O o 1 0 0 0 o 0 1 0 1 o 0 0 1 0
0O 1 0 0 O 1 0 1 0 o0 o 0 0 1 0 0O 0 o0 0 1

o 0 1 0 o0 5 o 1 0 1 0 5 1 0 0 0 1 5 0o 0 0O 0 ©O

0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0
But observe that 21 11 -7 -21 -11

11 21 7 —-11 =21
-7 7 13 7 -7
-21 11 7 21 11
-1 -21 -7 11 21

G =

Ol

: : T ¥ |
does not belong to this space: A is not closed under multiplication.

William J. Martin



Entrywise Operations on PSD Matrices

For a Hermitian matrix G, write G = 0 to indicate that G is
positive semidefinite: x' Gx > 0 for all x.

Since G = 0, we know that Go G =0, Go Go G = 0, etc.

WPI



Entrywise Operations on PSD Matrices

For a Hermitian matrix G, write G = 0 to indicate that G is
positive semidefinite: x' Gx > 0 for all x.

Since G = 0, we know that Go G =0, Go Go G = 0, etc.

If we apply f(t) = % (3152 — 1) entrywise to G, the resulting matrix
remains positive semidefinite.

WPI



Entrywise Operations on PSD Matrices

For a Hermitian matrix G, write G = 0 to indicate that G is
positive semidefinite: x' Gx > 0 for all x.
Since G = 0, we know that Go G =0, Go Go G = 0, etc.

If we apply f(t) = % (3152 — 1) entrywise to G, the resulting matrix
remains positive semidefinite.

If we instead apply g(t) = t?> — 2 entrywise to G, we obtain a
matrix with eigenvalues 0, 0, 16/9 and

—61 + /6473

18 ~2 1.080830908, —7.858608686
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Entrywise Operations on PSD Matrices

For a Hermitian matrix G, write G = 0 to indicate that G is
positive semidefinite: x' Gx > 0 for all x.
Since G = 0, we know that Go G =0, Go Go G = 0, etc.

If we apply f(t) = % (3152 — 1) entrywise to G, the resulting matrix
remains positive semidefinite.

If we instead apply g(t) = t?> — 2 entrywise to G, we obtain a
matrix with eigenvalues 0, 0, 16/9 and

—61 + /6473

18 ~2 1.080830908, —7.858608686

So what’ ial about f(t) = 1(3t2 — 1)? TS
(So what's special about (t) 2( )?) WPI
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Schoénberg’s Theorem and Association Schemes

Gegenbauer Polynomials

For each dimension m, we have a basis {Q/"(t)},2, for R[t] given
by the three-term recurrence

(2 m =4t QL (1) — (£-1) QF,(2)
N 4+ m-—3

Q'(t)=1 Q'(t)=t

These are the Gegenbauer polynomials.

0 (2,

WPI



Schoénberg’s Theorem and Association Schemes

Gegenbauer Polynomials
For each dimension m, we have a basis {Q/"(t)},2, for R[t] given
by the three-term recurrence
_ @A m—4) e QP(1) — (1) Q,(¢)
B {4+ m-3
Q(t)=1 Q) =t

These are the Gegenbauer polynomials.
Note that Q;"(1) =1 for all £ > 0. We will suppress the
superscript m if it is clear in the context.

0 (2,
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Schoénberg’s Theorem and Association Schemes

Gegenbauer Polynomials

For each dimension m, we have a basis {Q/"(t)},2, for R[t] given
by the three-term recurrence

(2 m =4t QL (1) — (£-1) QF,(2)
N 4+ m-—3

Q'(t)=1 Q'(t)=t

These are the Gegenbauer polynomials.

Note that Q;"(1) =1 for all £ > 0. We will suppress the
superscript m if it is clear in the context.

These are the zonal spherical harmonics: for each y € R,
F:x— Q ({x,y)) satisfies

0 (2,

_9°F 0°F

AF=2" ... +2°
Ox? Ox3,

=0
WPL
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Schoénberg’s Theorem and Association Schemes

Gegenbauer Polynomials

Here are the first six Gegenbauer polynomials for spherical codes in
dimension m.

-1
Q=1 QO=t  QH)="T—
3
Q3(t):(m+2)_t13t7
4 2
Qu(t) = (m+4)(m+2)t2 6(m+ 2)t +37
ms—1
5 3
Qs(t) (m+6)(m+4)t 2—10(m—|—4)t +15t‘
ms—1

WPI



Schoénberg’s Theorem and Association Schemes

Schonberg's Theorem (specialized)

Let m be a fixed positive integer. For a finite set of unit vectors

X C S™1 let Gx denote the Gram matrix of X.

A function f : [-1,1] — R is positive definite on S™1 if, for every
finite subset X, f applied entrywise to Gx results in a positive
semidefinite matrix; we write f o (Gx) = 0.

Theorem (Schonberg (1942))

Fix m € Z*. A polynomial f : [-1,1] — R of degree d is positive
definite on ST~ if and only if f(t) = Z?:o cQ(t) for
non-negative constants cy. O

In particular, Q(t) is a positive definite function for any choice of
m and /.

WPI



Schoénberg’s Theorem and Association Schemes

Cones

Let G = Gx be the Gram matrix of a finite subset X of S™~1.
Schonberg's Theorem implies that the map

Rt] = A=(J,G,Go0G,...)
given by f(t) — f o (G)

maps the cone generated by the Gegenbauer polynomials into the
positive semidefinite cone of A.

f(t) =) aQ(t)
=0

g>0VIL = fo(G)tO

This can be used to give powerful constraints on spherical codes via
semidefinite programming. (Wei-Hsuan Yu talked at WPI on this.) WrPL
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A More Interesting Spherical Code
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Our Second Spherical Code and its Gram Matrix

11 -1
1 -1 1
1 -1 -1

_ 1

X=7A1 1 1 1
11 -1
-1 -1 1

WPI



Our Second Spherical Code and its Gram Matrix

1 1 -1 3 1 -1 -3 -1 1
1 -1 1 1 3 1 -1 -3 -1
1 1 -1 -1 1f-1 1 3 1 -1 -3
X‘% 11 1| °T3l3 a1 1 3 1
-1 1 -1 -1 -3 -1 1 3 1
| -1 -1 1 | 1 -1 -3 -1 1 3|

WEPL
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Our Second Spherical Code and its Gram Matrix

We easily compute the entrywise square of the matrix G and its
entrywise cube:

9 1 1 9 1 1 27 1 -1 21 -1 1

19 1 1 9 1 1 27 1 -1 —27 -1

11 9 1 1 9 1 1 27 1 -1 —27
GoG=1 GoGoG=21
9 ) 27

9 1 1 9 1 1 —27 -1 1 27 1 -1

1 9 1 1 9 1 -1 -2 -1 1 27 1

L1 1 9 1 1 9 | 1 -1 21 -1 1 27

WPI



The Bose-Mesner Algebra of the Hexagon

This is a spherical 3-distance set. So the vector space
A=(J,G,G?2 G?S,..)=(J,G,G% G

admits a basis of 01-matrices: Ag =/, A1, As, A3 =

_0 1 0 0 O 1- —00 1 0 10_ _000 100_
1 0 1 0 0 O 0O 0 0 1 0 1 0O 0 0 0 1 o0
0 1 0 1 0 O 1 0 0 0 1 O 0O 0 0o o0 o0 1
0o 0 1 0 1 o0 ’ 0O 1 0 0 0 1 ’ 1 0 0 O 0 O
0 0 0 1 o0 1 1 0 1 0 0 O 0O 1 0 0 0 O

| 1 0 0o 0o 1 o0 Lo 1 0 1 0 0 ] Lo o0 1 0 0 0

This space is closed under matrix multiplication. So we have a
Bose-Mesner algebra, an association scheme.

WPI



Schoénberg’s Theorem and Association Schemes

Bose-Mesner Algebras

A vector space of v X v matrices A is a Bose-Mesner algebra if

> it is closed under conjugate transpose (e.g., all matrices are
symmetric)

» it is closed under (ordinary) multiplication and contains /

» it is closed under Schur/Hadamard (entrywise) multiplication
and contains J

Two bases:
{Ao, ..., Ad} {Eo,...,Eq4}
A,‘OAJ':(S,"J'A,' E,'EJ':(S,',J'E,'

A,'Aj = ZZ:O P,{jAk Eio EJ = %Zz:o q’!.;Ek

WPL
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Schoénberg’s Theorem and Association Schemes

Association Schemes: The Spherical Code Viewpoint

For today, a (commutative) association scheme is a set X of
distinct unit vectors in C™ for some m whose (Hermitian) Gram
matrix G = Gx has the property that the vector space

A=(J,G,G? G*3,..)
is closed under matrix multiplication.

The association scheme is cometric (or Q-polynomial) with respect
to X if, for each r and s (r <'s),

GG € (J,G,G*%,...,G")

Note: every commutative association scheme arises in this way. WL

William J. Martin



Schoénberg’s Theorem and Association Schemes

The structure constants of the structure constants are the

structure constants
Bose-Mesner algebra A admits basis {Eo, ..., Eq} with

E,'Ej = 6IJEI and
Define 0 0 0 0
q,'lo qill q,—12 s qild
. 90 491 92 4y
d 4 4 4
90 91 92 Y4
Then

d
GG =3 afts
k=0

WPI



Schoénberg’s Theorem and Association Schemes

Two key isomorphisms

The linear map from A to the space of (d + 1) x (d + 1) matrices
that sends A; to L; = [pf‘J]kJ is a ring (algebra) homomorphism

A;Aj —> L,'Lj

WPI



Schoénberg’s Theorem and Association Schemes

Two key isomorphisms

The linear map from A to the space of (d + 1) x (d + 1) matrices
that sends A; to L; = [pf‘J]kJ is a ring (algebra) homomorphism

A;Aj —> L,'Lj

The map ¢* from A to the space of (d + 1) x (d + 1) matrices
that sends

1.

* k
|X| I where Li :[qi,j]k,j

¢ (Ei) =
extended linearly, is an algebra monomorphism:
¢" (Mo N) = ¢*(M)¢™(N)

So (A, +,0) is isomorphic to the subalgebra (Lo, ..., Ly). WPL



The Map ¢* and Cones

We are thinking about
" (En) = ;Lh where Ly = [q} ]
extended linearly.

¢" (Mo N) = ¢*(M)¢™(N)

Lemma
The map ¢* sends the positive semidefinite cone of A bijectively to

d
{ ZC;L?‘ ' co,cl,...,cd>0}
i=0

WPI



Schoénberg’s Theorem and Association Schemes

Schonberg's Theorem (specialized)

This leads to the following theorem:

Theorem
Let (X, R) be an association scheme with minimal idempotents
Eo, ..., Eq and matrices of Krein parameters Ly, ..., LY. Fix some

E;, 0 <i<d, and let m; := rank(E;). Then for any choice of
¢ >0, there exist non-negative constants 0y;, 0 < j < d, such that

e ((5) - 206 o GOR X1 2t
)

The eigenvalues of Q ( ‘E) are Oy, . ..,00q where 0;; is

non-zero only if E; is contained in the Schur subalgebra generated
by E,'.
WPI
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Did we accomplish anything?

| 2

>

| 4

We are looking for a spherical code X and want to apply
Schonberg

In the case X generates an association scheme, we must test
if a matrix lies in the psd cone of a Bose-Mesner algebra A
Even though we don't know the matrices in A, we know their
entries from the parameters
So we instead apply ¢* and check if we are in the cone of
{Lg,-. ., Ly}
We only need to consider the first column (column “zero") of
¢*(f o (£))
We only need to consider f(t) € {Qo(t), Qi(t), Q(t),...}
But how far out should we check?

WPL
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A Really Nice Kodalen Theorem

View ‘;(—'EJ as the Gram matrix of a spherical code.

Consider the | X]| (or |X|/2) lines spanned by these vectors and let
A* = cos(0pmin), the cosine of the smallest angle formed. (Assume
this is the smallest angle of the spherical code, for convenience.)

Define
o rn [(L+ ()X - 1”
—2In(A%)

As long as (A\*)? > % /(¢* + mj — 2) we have

m [ 1
T =L) >
% (mj J) =0
for all ¢ > ¢*.
WPI



Schoénberg’s Theorem and Association Schemes
The Krein Array

Suppose A is a Bose-Mesner algebra with Q-polynomial ordering
Eo,E1,... Eq

of its primitive idempotents. Then L] is irreducible tridiagonal. It
is customary to write

0 b
1 af b
p-| o a4 B

This is recorded in the Krein array:
L*(X,R):{ba,b{,...,b;f,_l;l,c;‘...,c;“,} WPL

William J. Martin



Schoénberg’s Theorem and Association Schemes

New Feasibility Conditions for Cometric Association
Schemes

Theorem

Suppose we have a feasible parameter set for a cometric
association scheme with Krein array

(X, R)={m,bi,...,b;_1i1,¢ ..., ¢} where m> 2. Then
the scheme is realizable only if

2m(m—1
(ii) (a})* + bic; > 2mim ),
. * * * 4m(m—2
(iv) () + 2afa3 + ¢33, > %’
(v) Smlm1)m—4) | (32i(si+a3) csah)biei+(ai)
(m+8)(m+6) m
(7m—18)((a7)*+bi 3 )
m+6 ’

(e S (bt + 3 Sy ay ) < 2me2).

>

WPI



Schoénberg’s Theorem and Association Schemes

New Feasibility Conditions for Cometric Association
Schemes

The conditions get more technical as we consider Q;"(t) for
{=25,6:

tom(m-1) , (a1)"+(3ai (e +a) resad)bics - 12((a1) +bich)
(mia)(m+8) T (m—2)m = mT8

If a] > 0, then
(3% + bics (2+ Z) > 4m2md)

2 2 brcx(a* —a*)—ma* 6 4
(a1)? + 20735 — (33)° + 25 By + ZE ()i ontm g

WPI



Schoénberg’s Theorem and Association Schemes

Non-Existence Results for Cometric Schemes

Using these lists, we find nine 3-class primitive cometric schemes
and 11 4-class Q-bipartite schemes which are ruled out by these
inequalities. For each, here are (|X|, m) where |X| is the number
of points and m = rank E; is the dimension.

» 3-class primitive schemes ruled out
{(441,20), (576,23),(729,26), (1015, 28), (1240, 30),

(1548, 35), (1836, 35), (1944, 29), (1976, 25)} .

» 4-class Q-bipartite schemes
{(4464,24), (4968, 27), (5280, 30), (5436, 27), (6148, 29),

(8432,31), (9984, 32), (594,9), (7776, 27), (8478, 27), (9984, 24)}
WPL
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Why Association Schemes?

> efficiency in statistical experiments and coding theory

> the center of the group algebra of any finite group is a
commutative a.s.

» distance-regular graphs (cubes, Hamming, Johnson,
Grassmann, dual polar spaces, cages, generalized polygons,
DRACKNS, ...)

P tight spherical designs and extremal codes

» every spin model for knot invariants comes from a
Bose-Mesner algebra

» linked simplices, real mutually unbiased bases

» and more!
WPI



Schoénberg’s Theorem and Association Schemes
The End

Thank you for listening. | welcome questions.

#; A, y s LY

Jennifer and | just ripped up some dead lawn to build a succulent
garden (such is the “vacation week” in the age of Covid)

WPI
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