Recent developments in the discrete Fuglede conjecture

Romanos Diogenes Malikiosis

Aristotle University of Thessaloniki

Codes and Expansions (CodEx) Seminar
August 10th, 2021
Fourier Analysis on domains $\Omega \subseteq \mathbb{R}^n$

Question

On which measurable domains $\Omega \subseteq \mathbb{R}^n$ with $\mu(\Omega) > 0$ can we do Fourier analysis, that is, there is an orthonormal basis of exponential functions $\left\{ \frac{1}{\mu(\Omega)} e^{2\pi i \lambda \cdot x} : \lambda \in \Lambda \right\}$ in $L^2(\Omega)$, where $\Lambda \subseteq \mathbb{R}^n$ discrete?

Definition

If Ω satisfies the above condition it is called *spectral*, and Λ is the *spectrum* of Ω.

R. D. Malikiosis
Recent developments in the discrete Fuglede conjecture
Question

On which measurable domains $\Omega \subseteq \mathbb{R}^n$ with $\mu(\Omega) > 0$ can we do Fourier analysis, that is, there is an orthonormal basis of exponential functions $\left\{ \frac{1}{\mu(\Omega)} e^{2\pi i \lambda \cdot x} : \lambda \in \Lambda \right\}$ in $L^2(\Omega)$, where $\Lambda \subseteq \mathbb{R}^n$ discrete?

Definition

If Ω satisfies the above condition it is called *spectral*, and Λ is the *spectrum* of Ω.

- The n-dimensional cube $C = [0, 1]^n$.

R. D. Malikiosis

Recent developments in the discrete Fuglede conjecture
Fourier Analysis on domains $\Omega \subseteq \mathbb{R}^n$

Question

On which measurable domains $\Omega \subseteq \mathbb{R}^n$ with $\mu(\Omega) > 0$ can we do Fourier analysis, that is, there is an orthonormal basis of exponential functions $\left\{ \frac{1}{\mu(\Omega)} e^{2\pi i \lambda \cdot x} : \lambda \in \Lambda \right\}$ in $L^2(\Omega)$, where $\Lambda \subseteq \mathbb{R}^n$ discrete?

Definition

If Ω satisfies the above condition it is called *spectral*, and Λ is the *spectrum* of Ω.

- The n-dimensional cube $C = [0, 1]^n$.
- Parallelepips AC, where $A \in \text{GL}(n, \mathbb{R})$.
Fourier Analysis on domains $\Omega \subseteq \mathbb{R}^n$

Question

On which measurable domains $\Omega \subseteq \mathbb{R}^n$ with $\mu(\Omega) > 0$ can we do Fourier analysis, that is, there is an orthonormal basis of exponential functions $\left\{ \frac{1}{\mu(\Omega)} e^{2\pi i \lambda \cdot x} : \lambda \in \Lambda \right\}$ in $L^2(\Omega)$, where $\Lambda \subseteq \mathbb{R}^n$ discrete?

Definition

If Ω satisfies the above condition it is called *spectral*, and Λ is the *spectrum* of Ω.

- The n-dimensional cube $C = [0, 1]^n$.
- Parallelepipeds AC, where $A \in \text{GL}(n, \mathbb{R})$.
- Hexagons on \mathbb{R}^2.

R. D. Malikiosis

Recent developments in the discrete Fuglede conjecture
Fourier Analysis on domains $\Omega \subseteq \mathbb{R}^n$

Question

On which measurable domains $\Omega \subseteq \mathbb{R}^n$ with $\mu(\Omega) > 0$ can we do Fourier analysis, that is, there is an orthonormal basis of exponential functions $\left\{ \frac{1}{\mu(\Omega)} e^{2\pi i \lambda \cdot x} : \lambda \in \Lambda \right\}$ in $L^2(\Omega)$, where $\Lambda \subseteq \mathbb{R}^n$ discrete?

Definition

If Ω satisfies the above condition it is called *spectral*, and Λ is the *spectrum* of Ω.

- The n-dimensional cube $C = [0, 1]^n$.
- Parallelepipeds AC, where $A \in \text{GL}(n, \mathbb{R})$.
- Hexagons on \mathbb{R}^2.
- Not n-dimensional balls! ($n \geq 2$) (Iosevich, Katz, Pedersen, ’99)
Fourier Analysis on domains $\Omega \subseteq \mathbb{R}^n$

Question

On which measurable domains $\Omega \subseteq \mathbb{R}^n$ with $\mu(\Omega) > 0$ can we do Fourier analysis, that is, there is an orthonormal basis of exponential functions $\left\{ \frac{1}{\mu(\Omega)} e^{2\pi i \lambda \cdot x} : \lambda \in \Lambda \right\}$ in $L^2(\Omega)$, where $\Lambda \subseteq \mathbb{R}^n$ discrete?

Definition

If Ω satisfies the above condition it is called *spectral*, and Λ is the *spectrum* of Ω.

- The n-dimensional cube $C = [0, 1]^n$.
- Parallelepipeds AC, where $A \in \text{GL}(n, \mathbb{R})$.
- Hexagons on \mathbb{R}^2.
- Not n-dimensional balls! ($n \geq 2$) (Iosevich, Katz, Pedersen, ’99)
Fuglede’s conjecture

Definition

A set $\Omega \subseteq \mathbb{R}^n$ of positive measure is called *tile* of \mathbb{R}^n if there is $T \subseteq \mathbb{R}^n$ such that $\Omega \oplus T = \mathbb{R}^n$.

Conjecture (Fuglede, 1974)

A set $\Omega \subseteq \mathbb{R}^n$ of positive measure is spectral if and only if it tiles \mathbb{R}^n.

R. D. Malikiosis
Recent developments in the discrete Fuglede conjecture
Definition
A set $\Omega \subseteq \mathbb{R}^n$ of positive measure is called \textit{tile} of \mathbb{R}^n if there is $T \subseteq \mathbb{R}^n$ such that $\Omega \oplus T = \mathbb{R}^n$.

Conjecture (Fuglede, 1974)
A set $\Omega \subseteq \mathbb{R}^n$ of positive measure is \textit{spectral} if and only if it tiles \mathbb{R}^n.

Fuglede’s conjecture

Recent developments in the discrete Fuglede conjecture
Theorem (Fuglede, ’74)

Let $\Omega \subseteq \mathbb{R}^n$ be an open bounded set of measure 1 and $\Lambda \subseteq \mathbb{R}^n$ be a lattice with density 1. then $\Omega \oplus \Lambda = \mathbb{R}^n$ if and only if Λ^* is a spectrum of Ω.

Theorem (Lev, Matolcsi, ’19)

Let $K \subseteq \mathbb{R}^n$ be a convex body; then K is spectral if and only if it tiles \mathbb{R}^n.

Recent developments in the discrete Fuglede conjecture
Special cases

Theorem (Fuglede, ’74)

Let $\Omega \subseteq \mathbb{R}^n$ be an open bounded set of measure 1 and $\Lambda \subseteq \mathbb{R}^n$ be a lattice with density 1. then $\Omega \oplus \Lambda = \mathbb{R}^n$ if and only if Λ^* is a spectrum of Ω.

Theorem (Lev, Matolcsi, ’19)

Let $K \subseteq \mathbb{R}^n$ be a convex body; then K is spectral if and only if it tiles \mathbb{R}^n.

R. D. Malikiosis

Recent developments in the discrete Fuglede conjecture
Tao’s counterexample

“A cataclysmic event in the history of this problem took place in 2004 when Terry Tao disproved the Fuglede Conjecture by exhibiting a spectral set in \mathbb{R}^{12} which does not tile.”

The Fuglede Conjecture holds in $\mathbb{Z}_p \times \mathbb{Z}_p$, Iosevich, Mayeli, Pakianathan, 2017.
“A cataclysmic event in the history of this problem took place in 2004 when Terry Tao disproved the Fuglede Conjecture by exhibiting a spectral set in \mathbb{R}^{12} which does not tile.”

The Fuglede Conjecture holds in $\mathbb{Z}_p \times \mathbb{Z}_p$, Iosevich, Mayeli, Pakianathan, 2017.

Theorem (Tao, ’04)

There are spectral subsets of \mathbb{R}^5 of positive measure that do not tile \mathbb{R}^5.
Tao’s counterexample

“A cataclysmic event in the history of this problem took place in 2004 when Terry Tao disproved the Fuglede Conjecture by exhibiting a spectral set in \mathbb{R}^{12} which does not tile.”

The Fuglede Conjecture holds in $\mathbb{Z}_p \times \mathbb{Z}_p$, Iosevich, Mayeli, Pakianathan, 2017.

Theorem (Tao, ’04)

There are spectral subsets of \mathbb{R}^5 of positive measure that do not tile \mathbb{R}^5.

Theorem (Farkas-Kolountzakis-Matolcsi-Mora-Revesz-Tao, ’04-’06)

Fuglede’s conjecture fails for $n \geq 3$ (both directions).
“A cataclysmic event in the history of this problem took place in 2004 when Terry Tao disproved the Fuglede Conjecture by exhibiting a spectral set in \mathbb{R}^{12} which does not tile.”

The Fuglede Conjecture holds in $\mathbb{Z}_p \times \mathbb{Z}_p$, Iosevich, Mayeli, Pakianathan, 2017.

Theorem (Tao, ’04)

There are spectral subsets of \mathbb{R}^5 of positive measure that do not tile \mathbb{R}^5.

Theorem (Farkas-Kolountzakis-Matolcsi-Mora-Revesz-Tao, ’04-’06)

Fuglede’s conjecture fails for $n \geq 3$ (both directions).

The conjecture is still open for $n \leq 2$. Tao’s counterexample is a union of unit cubes. It comes from a spectral subset of \mathbb{Z}_3^5 of size 6.
“A cataclysmic event in the history of this problem took place in 2004 when Terry Tao disproved the Fuglede Conjecture by exhibiting a spectral set in \mathbb{R}^{12} which does not tile.”

The Fuglede Conjecture holds in $\mathbb{Z}_p \times \mathbb{Z}_p$, Iosevich, Mayeli, Pakianathan, 2017.

Theorem (Tao, ’04)

There are spectral subsets of \mathbb{R}^5 of positive measure that do not tile \mathbb{R}^5.

Theorem (Farkas-Kolountzakis-Matolcsi-Mora-Revesz-Tao, ’04-’06)

Fuglede’s conjecture fails for $n \geq 3$ (both directions).

The conjecture is still open for $n \leq 2$. Tao’s counterexample is a union of unit cubes. It comes from a spectral subset of \mathbb{Z}_3^5 of size 6.
Consider the standard basis of \mathbb{Z}_3^6, e_1, \ldots, e_6. Let $\omega = e^{2\pi i/3}$ and ξ_1, \ldots, ξ_6 be characters such that

$$[\xi_j(e_i)]_{1 \leq i,j \leq 6} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & \omega & \omega & \omega^2 & \omega^2 \\ 1 & \omega & 1 & \omega^2 & \omega^2 & \omega \\ 1 & \omega & \omega^2 & 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega^2 & \omega & 1 & \omega \\ 1 & \omega^2 & \omega & \omega^2 & \omega & 1 \end{pmatrix}$$
Consider the standard basis of \mathbb{Z}_3^6, e_1, \ldots, e_6. Let $\omega = e^{2\pi i/3}$ and ξ_1, \ldots, ξ_6 be characters such that

$$\begin{bmatrix} \xi_j(e_i) \end{bmatrix}_{1 \leq i, j \leq 6} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & \omega & \omega & \omega^2 & \omega^2 \\ 1 & \omega & 1 & \omega^2 & \omega^2 & \omega \\ 1 & \omega & \omega^2 & 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega^2 & \omega & 1 & \omega \\ 1 & \omega^2 & \omega & \omega^2 & \omega & 1 \end{pmatrix}$$

The above matrix is Hadamard, hence $\Lambda = \{\xi_1, \ldots, \xi_6\}$ is a spectrum of $\Omega = \{e_1, \ldots, e_6\}$. $\Omega - e_1$ then is contained in a hyperplane, thus showing the existence of a counterexample in \mathbb{Z}_3^5. Obviously, such a set cannot tile, since $6 \nmid 3^5$.

R. D. Malikiosis

Recent developments in the discrete Fuglede conjecture
Tao’s counterexample

Consider the standard basis of \(\mathbb{Z}_3^6 \), \(e_1, \ldots, e_6 \). Let \(\omega = e^{2\pi i/3} \) and \(\xi_1, \ldots, \xi_6 \) be characters such that

\[
[\xi_j(e_i)]_{1 \leq i,j \leq 6} = \begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & \omega & \omega & \omega^2 & \omega^2 \\
1 & \omega & 1 & \omega^2 & \omega^2 & \omega \\
1 & \omega & \omega^2 & 1 & \omega & \omega^2 \\
1 & \omega^2 & \omega^2 & \omega & 1 & \omega \\
1 & \omega^2 & \omega & \omega^2 & \omega & 1
\end{pmatrix}
\]

The above matrix is \textit{Hadamard}, hence \(\Lambda = \{\xi_1, \ldots, \xi_6\} \) is a spectrum of \(\Omega = \{e_1, \ldots, e_6\} \). \(\Omega - e_1 \) then is contained in a hyperplane, thus showing the existence of a counterexample in \(\mathbb{Z}_3^5 \). Obviously, such a set cannot tile, since \(6 \nmid 3^5 \).
Definition

Let G be an Abelian group. We write $(S-T(G))$ if every bounded spectral subset of G is also a tile, and $(T-S(G))$ if every bounded tile of G is spectral.

Theorem

The following hold:

$$(T-S(\mathbb{Z}_n)) \forall n \in \mathbb{N} \iff (T-S(\mathbb{Z})) \iff (T-S(\mathbb{R}))$$

and

$$(S-T(\mathbb{R})) \Rightarrow (S-T(\mathbb{Z})) \Rightarrow (S-T(\mathbb{Z}_n)) \forall n \in \mathbb{N}.$$
Definition

Let G be an Abelian group. We write $(S-T(G))$ if every bounded spectral subset of G is also a tile, and $(T-S(G))$ if every bounded tile of G is spectral.

Theorem

The following hold:

$$(T-S(\mathbb{Z}_n)) \forall n \in \mathbb{N} \iff (T-S(\mathbb{Z})) \iff (T-S(\mathbb{R}))$$

and

$$(S-T(\mathbb{R})) \Rightarrow (S-T(\mathbb{Z})) \Rightarrow (S-T(\mathbb{Z}_n)) \forall n \in \mathbb{N}.$$
The last hold in both directions if every bounded spectral subset of \mathbb{R} has a rational spectrum.

Theorem (Dutkay, Lai, ’14)

If Fuglede’s conjecture holds in \mathbb{R}, then every bounded spectral set has a rational spectrum.
The last hold in both directions if every bounded spectral subset of \mathbb{R} has a rational spectrum.

Theorem (Dutkay, Lai, ’14)

If Fuglede’s conjecture holds in \mathbb{R}, then every bounded spectral set has a rational spectrum.

Partial positive results on the rationality of spectrum have been proved by Łaba (’02), Bose & Madan (’17).
The last hold in both directions if every bounded spectral subset of \(\mathbb{R} \) has a rational spectrum.

Theorem (Dutkay, Lai, '14)

If Fuglede’s conjecture holds in \(\mathbb{R} \), then every bounded spectral set has a rational spectrum.

Partial positive results on the rationality of spectrum have been proved by Łaba ('02), Bose & Madan ('17).
The properties \((S-T(G))\) and \((T-S(G))\) are hereditary, that is, they hold for every subgroup of \(G\).

It suffices then to examine groups of the form \(\mathbb{Z}_N^d\). For \(d \geq 2\) we get the following results:

- There is a spectral subset of \(\mathbb{Z}_{32}^8\) that does not tile (Kolountzakis, Matolcsi, '06).
- There is a tile of \(\mathbb{Z}_{32}^{24}\) that is not spectral (Farkas, Matolcsi, Mora, '06).
- There are spectral subsets of \(\mathbb{Z}_{4p}^p\) that do not tile for \(p\) odd (Ferguson, Sothanaphan; independently Mattheus '20); the same holds for \(\mathbb{Z}_{10}^{2}\) (F-S, '20).
The properties \((S-T(G))\) and \((T-S(G))\) are hereditary, that is, they hold for every subgroup of \(G\).

It suffices then to examine groups of the form \(\mathbb{Z}^d_N\). For \(d \geq 2\) we get the following results:

- There is a spectral subset of \(\mathbb{Z}^3_8\) that does not tile (Kolountzakis, Matolcsi, ’06).
- There is a tile of \(\mathbb{Z}^2_3\) that is not spectral (Farkas, Matolcsi, Mora, ’06).
- There are spectral subsets of \(\mathbb{Z}^4_{p}\) that do not tile for \(p\) odd (Ferguson, Sothanaphan; independently Mattheus ’20); the same holds for \(\mathbb{Z}^2_{10}\) (F-S, ’20).
The properties \((S-T(G))\) and \((T-S(G))\) are hereditary, that is, they hold for every subgroup of \(G\).

It suffices then to examine groups of the form \(\mathbb{Z}_N^d\). For \(d \geq 2\) we get the following results:

- There is a spectral subset of \(\mathbb{Z}_8^3\) that does not tile (Kolountzakis, Matolcsi, ’06).
- There is a tile of \(\mathbb{Z}_{24}^3\) that is not spectral (Farkas, Matolcsi, Mora, ’06).
The properties $(S-T(G))$ and $(T-S(G))$ are hereditary, that is, they hold for every subgroup of G. It suffices then to examine groups of the form \mathbb{Z}_N^d. For $d \geq 2$ we get the following results:

- There is a spectral subset of \mathbb{Z}_8^3 that does not tile (Kolountzakis, Matolcsi, ’06).
- There is a tile of \mathbb{Z}_{24}^3 that is not spectral (Farkas, Matolcsi, Mora, ’06).
- There are spectral subsets of \mathbb{Z}_p^4 that do not tile for p odd (Ferguson, Sothanaphan; independently Mattheus ’20); the same holds for \mathbb{Z}_{10}^{10} (F-S, ’20).
The properties \((S-T(G))\) and \((T-S(G))\) are hereditary, that is, they hold for every subgroup of \(G\). It suffices then to examine groups of the form \(\mathbb{Z}_N^d\). For \(d \geq 2\) we get the following results:

- There is a spectral subset of \(\mathbb{Z}_8^3\) that does not tile (Kolountzakis, Matolcsi, ’06).
- There is a tile of \(\mathbb{Z}_{24}^3\) that is not spectral (Farkas, Matolcsi, Mora, ’06).
- There are spectral subsets of \(\mathbb{Z}_p^4\) that do not tile for \(p\) odd (Ferguson, Sothanaphan; independently Mattheus ’20); the same holds for \(\mathbb{Z}_2^{10}\) (F-S, ’20).
The properties \((S-T(G))\) and \((T-S(G))\) are hereditary, that is, they hold for every subgroup of \(G\).

It suffices then to examine groups of the form \(\mathbb{Z}_N^d\). For \(d \geq 2\) we get the following results:

- There is a spectral subset of \(\mathbb{Z}_8^3\) that does not tile (Kolountzakis, Matolcsi, ’06).
- There is a tile of \(\mathbb{Z}_{24}^3\) that is not spectral (Farkas, Matolcsi, Mora, ’06).
- There are spectral subsets of \(\mathbb{Z}_p^4\) that do not tile for \(p\) odd (Ferguson, Sothanaphan; independently Mattheus ’20); the same holds for \(\mathbb{Z}_{10}^{10}\) (F-S, ’20).
Non-cyclic groups; positive results

- Fuglede’s conjecture holds in \mathbb{Z}_p^2, p prime (Iosevich, Mayeli, Pakianathan, ’17).
- Fuglede’s conjecture holds in \mathbb{Z}_2^6 (Ferguson, Sothanaphan, ’20).
Non-cyclic groups; positive results

- Fuglede’s conjecture holds in \mathbb{Z}_p^2, p prime (Iosevich, Mayeli, Pakianathan, ’17).
- Fuglede’s conjecture holds in \mathbb{Z}_2^6 (Ferguson, Sothanaphan, ’20).
- Fuglede’s conjecture holds in $\mathbb{Z}_p^2 \times \mathbb{Z}_p$ (Shi, ’20).
Non-cyclic groups; positive results

- Fuglede’s conjecture holds in \mathbb{Z}_p^2, p prime (Iosevich, Mayeli, Pakianathan, ’17).
- Fuglede’s conjecture holds in \mathbb{Z}_2^6 (Ferguson, Sothanaphan, ’20).
- Fuglede’s conjecture holds in $\mathbb{Z}_p^2 \times \mathbb{Z}_p$ (Shi, ’20).
- Fuglede’s conjecture holds in $\mathbb{Z}_p^2 \times \mathbb{Z}_q^2$, (Fallon, Kiss, Somlai, ’21).

R. D. Malikiosis
Recent developments in the discrete Fuglede conjecture
Non-cyclic groups; positive results

- Fuglede’s conjecture holds in \mathbb{Z}_p^2, p prime (Iosevich, Mayeli, Pakianathan, ’17).
- Fuglede’s conjecture holds in \mathbb{Z}_2^6 (Ferguson, Sothanaphan, ’20).
- Fuglede’s conjecture holds in $\mathbb{Z}_p^2 \times \mathbb{Z}_p$ (Shi, ’20).
- Fuglede’s conjecture holds in $\mathbb{Z}_p^2 \times \mathbb{Z}_q^2$, (Fallon, Kiss, Somlai, ’21).
- Every tile of \mathbb{Z}_p^3 is spectral (Aten et al. ’17).
Non-cyclic groups; positive results

- Fuglede’s conjecture holds in \mathbb{Z}_p^2, p prime (Iosevich, Mayeli, Pakianathan, ’17).
- Fuglede’s conjecture holds in \mathbb{Z}_2^6 (Ferguson, Sothanaphan, ’20).
- Fuglede’s conjecture holds in $\mathbb{Z}_p^2 \times \mathbb{Z}_p$ (Shi, ’20).
- Fuglede’s conjecture holds in $\mathbb{Z}_p^2 \times \mathbb{Z}_q^2$, (Fallon, Kiss, Somlai, ’21).
- Every tile of \mathbb{Z}_p^3 is spectral (Aten et al. ’17).
- Every spectral subset of \mathbb{Z}_p^3 is a tile, for $p \leq 7$ (Fallon, Mayeli, Villano, ’19).
• Fuglede’s conjecture holds in \mathbb{Z}_p^2, p prime (Iosevich, Mayeli, Pakianathan, ’17).
• Fuglede’s conjecture holds in \mathbb{Z}_2^6 (Ferguson, Sothanaphan, ’20).
• Fuglede’s conjecture holds in $\mathbb{Z}_p^2 \times \mathbb{Z}_p$ (Shi, ’20).
• Fuglede’s conjecture holds in $\mathbb{Z}_p^2 \times \mathbb{Z}_q^2$, (Fallon, Kiss, Somlai, ’21).
• Every tile of \mathbb{Z}_p^3 is spectral (Aten et al. ’17).
• Every spectral subset of \mathbb{Z}_p^3 is a tile, for $p \leq 7$ (Fallon, Mayeli, Villano, ’19).
Let $A \subseteq \mathbb{Z}_N$ and $e_\lambda(a) = e^{2\pi i \lambda \cdot a/N}$. Inner product on $L^2(A)$:

$$\langle f, g \rangle_A = \sum_{a \in A} f(a)\overline{g(a)}.$$

It holds $\langle e_\lambda, e_{\lambda'} \rangle_A = \hat{1}_A(\lambda' - \lambda)$.

Lemma

\(\Lambda\) is a spectrum of $A \subseteq \mathbb{Z}_N$ if and only if

$$\hat{1}_A(\lambda' - \lambda) = 0, \ \forall \lambda \neq \lambda', \lambda, \lambda' \in \Lambda$$

and $|A| = |\Lambda|$.

R. D. Malikiosis
Recent developments in the discrete Fuglede conjecture
Let $A \subseteq \mathbb{Z}_N$ and $e_\lambda(a) = e^{2\pi i \lambda \cdot a/N}$. Inner product on $L^2(A)$:

$$\langle f, g \rangle_A = \sum_{a \in A} f(a)\overline{g(a)}.$$

It holds

$$\langle e_\lambda, e_{\lambda'} \rangle_A = \hat{1}_A(\lambda' - \lambda).$$

Lemma

A is a spectrum of $A \subseteq \mathbb{Z}_N$ if and only if

$$\hat{1}_A(\lambda' - \lambda) = 0, \quad \forall \lambda \neq \lambda', \lambda, \lambda' \in \Lambda$$

and $|A| = |\Lambda|$.

R. D. Malikiosis Recent developments in the discrete Fuglede conjecture
The mask polynomial

Definition (Coven-Meyerowitz, ’98)

Let $A \subseteq \mathbb{Z}_N$. The mask polynomial A is given by

$$\sum_{a \in A} X^a \in \mathbb{Z}[X]/(X^N - 1).$$

It holds

$$\hat{1}_A(d) = A(\zeta_N^d), \forall d \in \mathbb{Z}_N.$$

Λ is a spectrum of A if and only if $|A| = |\Lambda|$ and

$$A(\zeta_{\text{ord}(\ell - \ell')}) = 0, \forall \ell, \ell' \in \Lambda, \ell \neq \ell'.$$
The mask polynomial

Definition (Coven-Meyerowitz, ’98)

Let $A \subseteq \mathbb{Z}_N$. The mask polynomial A is given by

$$
\sum_{a \in A} X^a \in \mathbb{Z}[X]/(X^N - 1).
$$

It holds

$$
\widehat{1}(d) = A(\zeta_N^d), \forall d \in \mathbb{Z}_N.
$$

Λ is a spectrum of A if and only if $|A| = |\Lambda|$ and

$$
A(\zeta_{\text{ord}(\ell - \ell')}) = 0, \forall \ell, \ell' \in \Lambda, \ell \neq \ell'.
$$

Moreover, $A \oplus T = \mathbb{Z}_N$ if and only if

$$
A(X) T(X) \equiv 1 + X + X^2 + \cdots + X^{N-1} \mod (X^N - 1).
$$
The mask polynomial

Definition (Coven-Meyerowitz, ’98)

Let $A \subseteq \mathbb{Z}_N$. The mask polynomial A is given by

$$\sum_{a \in A} X^a \in \mathbb{Z}[X]/(X^N - 1).$$

It holds

$$\hat{1}_A(d) = A(\zeta_N^d), \forall d \in \mathbb{Z}_N.$$

Λ is a spectrum of A if and only if $|A| = |\Lambda|$ and

$$A(\zeta_{\text{ord}(\ell - \ell')}) = 0, \ \forall \ell, \ell' \in \Lambda, \ell \neq \ell'.$$

Moreover, $A \oplus T = \mathbb{Z}_N$ if and only if

$$A(X)T(X) \equiv 1 + X + X^2 + \cdots + X^{N-1} \mod (X^N - 1).$$
The properties (T1) and (T2)

Definition

Let \(A(X) \in \mathbb{Z}[X]/(X^N - 1) \), and let

\[
S_A = \{ d \mid N : \text{d prime power}, A(\zeta_d) = 0 \}.
\]

We define the following properties:

- **(T1)** \(A(1) = \prod_{s \in S_A} \Phi_s(1) \)
- **(T2)** Let \(s_1, s_2, \ldots, s_k \in S_A \) be powers of different primes. Then \(\Phi_s(X) \mid A(X) \), where \(s = s_1 \cdots s_k \).

Remark

When \(N \) is a prime power, (T2) holds vacuously. If \(N = p^n q^m \), then (T2) is simply

\[
A(\zeta_{p^k}) = A(\zeta_{q^\ell}) = 0 \Rightarrow A(\zeta_{p^k q^\ell}) = 0
\]
The properties (T1) and (T2)

Definition

Let $A(X) \in \mathbb{Z}[X]/(X^N - 1)$, and let

$$S_A = \{d \mid N : d \text{ prime power}, A(\zeta_d) = 0\}.$$

We define the following properties:

T1
$$A(1) = \prod_{s \in S_A} \Phi_s(1)$$

T2
Let $s_1, s_2, \ldots, s_k \in S_A$ be powers of different primes. Then

$$\Phi_s(X) \mid A(X), \text{ where } s = s_1 \cdots s_k.$$

Remark

When N is a prime power, (T2) holds vacuously. If $N = p^n q^m$, then (T2) is simply

$$A(\zeta_{p^k}) = A(\zeta_{q^\ell}) = 0 \Rightarrow A(\zeta_{p^k q^\ell}) = 0$$
Let $A \subseteq \mathbb{Z}_N$, $N = p^4 q^4 r^3$, such that

$$A(\zeta_p) = A(\zeta_{p^3}) = A(\zeta_{q^2}) = A(\zeta_{r^3}) = 0,$$

and $A(X)$ has no other root of order a power of p, q, or r. Then,

- (T1) is $|A| = p^2 qr$.

Let $A \subseteq \mathbb{Z}_N$, $N = p^4 q^4 r^3$, such that

$$A(\zeta_p) = A(\zeta_{p^3}) = A(\zeta_{q^2}) = A(\zeta_{r^3}) = 0,$$

and $A(X)$ has no other root of order a power of p, q, or r. Then,

- (T1) is $|A| = p^2 qr$.
- (T2): $A(\zeta_p) = A(\zeta_{q^2}) = 0 \Rightarrow A(\zeta_{pq^2}) = 0$.
Let $A \subseteq \mathbb{Z}_N$, $N = p^4 q^4 r^3$, such that

$$A(\zeta_p) = A(\zeta_{p^3}) = A(\zeta_{q^2}) = A(\zeta_{r^3}) = 0,$$

and $A(X)$ has no other root of order a power of p, q, or r. Then,

- (T1) is $|A| = p^2 qr$.
- (T2): $A(\zeta_p) = A(\zeta_{q^2}) = 0 \Rightarrow A(\zeta_{pq^2}) = 0$.
- (T2): $A(\zeta_{p^3}) = A(\zeta_{r^3}) = 0 \Rightarrow A(\zeta_{p^3r^3}) = 0$.

R. D. Malikiosis

Recent developments in the discrete Fuglede conjecture
Let $A \subseteq \mathbb{Z}_N$, $N = p^4 q^4 r^3$, such that

$$A(\zeta_p) = A(\zeta_{p^3}) = A(\zeta_{q^2}) = A(\zeta_{r^3}) = 0,$$

and $A(X)$ has no other root of order a power of p, q, or r. Then,

- (T1) is $|A| = p^2qr$.
- (T2): $A(\zeta_p) = A(\zeta_{q^2}) = 0 \Rightarrow A(\zeta_{pq^2}) = 0$.
- (T2): $A(\zeta_{p^3}) = A(\zeta_{r^3}) = 0 \Rightarrow A(\zeta_{p^3r^3}) = 0$.
- (T2): $A(\zeta_p) = A(\zeta_{q^2}) = A(\zeta_{r^3}) = 0 \Rightarrow A(\zeta_{pq^2r^3}) = 0$.

R. D. Malikiosis

Recent developments in the discrete Fuglede conjecture
Let $A \subseteq \mathbb{Z}_N$, $N = p^4 q^4 r^3$, such that

$$A(\zeta_p) = A(\zeta_{p^3}) = A(\zeta_{q^2}) = A(\zeta_{r^3}) = 0,$$

and $A(X)$ has no other root of order a power of p, q, or r. Then,

- (T1) is $|A| = p^2 qr$.
- (T2): $A(\zeta_p) = A(\zeta_{q^2}) = 0 \Rightarrow A(\zeta_{pq^2}) = 0$.
- (T2): $A(\zeta_{p^3}) = A(\zeta_{r^3}) = 0 \Rightarrow A(\zeta_{p^3r^3}) = 0$.
- (T2): $A(\zeta_p) = A(\zeta_{q^2}) = A(\zeta_{r^3}) = 0 \Rightarrow A(\zeta_{pq^2r^3}) = 0$.
- We also have

$$A(\zeta_{p^3q^2}) = A(\zeta_{pr^3}) = A(\zeta_{q^2r^3}) = A(\zeta_{p^3q^2r^3}) = 0.$$
Let $A \subseteq \mathbb{Z}_N$, $N = p^4 q^4 r^3$, such that

$$A(\zeta_p) = A(\zeta_{p^3}) = A(\zeta_{q^2}) = A(\zeta_{r^3}) = 0,$$

and $A(X)$ has no other root of order a power of p, q, or r. Then,

- (T1) is $|A| = p^2 qr$.
- (T2): $A(\zeta_p) = A(\zeta_{q^2}) = 0 \Rightarrow A(\zeta_{pq^2}) = 0$.
- (T2): $A(\zeta_{p^3}) = A(\zeta_{r^3}) = 0 \Rightarrow A(\zeta_{p^3 r^3}) = 0$.
- (T2): $A(\zeta_p) = A(\zeta_{q^2}) = A(\zeta_{r^3}) = 0 \Rightarrow A(\zeta_{pq^2 r^3}) = 0$.
- We also have

 $$A(\zeta_{p^3 q^2}) = A(\zeta_{pr^3}) = A(\zeta_{q^2 r^3}) = A(\zeta_{p^3 q^2 r^3}) = 0.$$
Theorem (Coven-Meyerowitz, ’98)

If \(A \subseteq \mathbb{Z}_N \) satisfies (T1) and (T2), then it tiles \(\mathbb{Z}_N \). If \(A \) tiles \(\mathbb{Z}_N \), then it satisfies (T1); if in addition \(N = p^n q^m \), then \(A \) satisfies (T2) as well.

Theorem (Laba, ’02)

If \(A \subseteq \mathbb{Z}_N \) satisfies (T1) and (T2), then it is spectral. If \(N = p^n \) and \(A \) is spectral, then it satisfies (T1).
Theorem (Coven-Meyerowitz, ’98)

If $A \subseteq \mathbb{Z}_N$ satisfies (T1) and (T2), then it tiles \mathbb{Z}_N. If A tiles \mathbb{Z}_N, then it satisfies (T1); if in addition $N = p^n q^m$, then A satisfies (T2) as well.

Theorem (Łaba, ’02)

If $A \subseteq \mathbb{Z}_N$ satisfies (T1) and (T2), then it is spectral. If $N = p^n$ and A is spectral, then it satisfies (T1).
Let $A \subseteq \mathbb{Z}_N$ with spectrum Λ. The Nth roots of unity on which $A(X)$ vanishes are precisely

$$
\zeta_{p^{\nu_1}}, \ldots, \zeta_{p^{\nu_k}}.
$$

Put $R = \{p^{\nu_1}, \ldots, p^{\nu_k}\}$. Therefore

$$
E(X) = \prod_{d \in R} \Phi_d(X) \mid A(X),
$$

whence $p^k \mid |A|$. Therefore, $E(X)$ is then the mask polynomial of a subset E with p^k elements, whose spectrum is Λ. Hence, $|A| = p^k$, so A satisfies (T1).
Let $A \subseteq \mathbb{Z}_N$ with spectrum Λ. The Nth roots of unity on which $A(X)$ vanishes are precisely

$$\zeta_{p^{\nu_1}}, \ldots, \zeta_{p^{\nu_k}}.$$

Put $R = \{p^{\nu_1}, \ldots, p^{\nu_k}\}$. Therefore

$$E(X) = \prod_{d \in R} \Phi_d(X) \mid A(X),$$

whence $p^k \mid |A|$. $E(X)$ is then the mask polynomial of a subset E with p^k elements, whose spectrum is Λ. Hence, $|A| = p^k$, so A satisfies (T1).
Let \(A \subseteq \mathbb{Z}_N \) with spectrum \(\Lambda \). The \(N \)th roots of unity on which \(A(X) \) vanishes are precisely

\[\zeta p^{\nu_1}, \ldots, \zeta p^{\nu_k}. \]

Put \(R = \{ p^{\nu_1}, \ldots, p^{\nu_k} \} \). Therefore

\[E(X) = \prod_{d \in R} \Phi_d(X) \mid A(X), \]

whence \(p^k \mid |A| \). \(E(X) \) is then the mask polynomial of a subset \(E \) with \(p^k \) elements, whose spectrum is \(\Lambda \). Hence, \(|A| = p^k \), so \(A \) satisfies (T1).
Let $A \oplus T = \mathbb{Z}_N$, or equivalently

$$A(X) T(X) \equiv 1 + X + X^2 + \cdots + X^{N-1} \mod (X^N - 1).$$

As before, $\zeta_{p^{\nu_1}}, \ldots, \zeta_{p^{\nu_k}}$ are precisely the roots of $A(X)$, whence

$$E(X) = \prod_{d \in R} \Phi_d(X) \mid A(X),$$

(R. D. Malikiosis: Recent developments in the discrete Fuglede conjecture)
Let $A \oplus T = \mathbb{Z}_N$, or equivalently

$$A(X) T(X) \equiv 1 + X + X^2 + \cdots + X^{N-1} \mod (X^N - 1).$$

As before, $\zeta_{p^{\nu_1}}, \ldots, \zeta_{p^{\nu_k}}$ are precisely the roots of $A(X)$, whence

$$E(X) = \prod_{d \in R} \Phi_d(X) \mid A(X),$$

and

$$\prod_{d \mid N, d \notin R} \Phi_d(X) \mid T(X),$$

yielding $p^k = |A|$, $p^{n-k} = |T|$, thus A satisfies (T1).
Let $A \oplus T = \mathbb{Z}_N$, or equivalently

$$A(X) T(X) \equiv 1 + X + X^2 + \cdots + X^{N-1} \mod (X^N - 1).$$

As before, $\zeta_{p^\nu_1}, \ldots, \zeta_{p^\nu_k}$ are precisely the roots of $A(X)$, whence

$$E(X) = \prod_{d \in R} \Phi_d(X) \mid A(X),$$

and

$$\prod_{d | N, d \notin R} \Phi_d(X) \mid T(X),$$

yielding $p^k = |A|$, $p^{n-k} = |T|$, thus A satisfies (T1).
Lemma (Coven-Meyerowitz, ’98)

Suppose $A \oplus T = \mathbb{Z}_N$ and p a prime such that $p \nmid |T|$. Then $A \oplus (pT) = \mathbb{Z}_N$.

Corollary

Suppose $A \oplus T = \mathbb{Z}_N$ and $M \in \mathbb{N}$ such that $\gcd(|T|, M) = 1$. Then $A \oplus (MT) = \mathbb{Z}_N$.
(T-S(\(\mathbb{Z}_N\))), \(N = p_1^m p_2 \cdots p_n\)

Lemma (Coven-Meyerowitz, ’98)

Suppose \(A \oplus T = \mathbb{Z}_N\) and \(p\) a prime such that \(p \nmid |T|\). Then \(A \oplus (pT) = \mathbb{Z}_N\).

Corollary

Suppose \(A \oplus T = \mathbb{Z}_N\) and \(M \in \mathbb{N}\) such that \(\gcd(|T|, M) = 1\). Then \(A \oplus (MT) = \mathbb{Z}_N\).

Corollary

Suppose \(A \oplus T = \mathbb{Z}_N\) with \(N\) square-free and \(M = |A|\). Then \(A \oplus (MT) = \mathbb{Z}_N\).

This was used by Łaba and Meyerowitz to prove (T-S(\(\mathbb{Z}_N\))), for \(N\) square-free (Tao’s blog, ’11).
Lemma (Coven-Meyerowitz, ’98)
Suppose \(A \oplus T = \mathbb{Z}_N \) and \(p \) a prime such that \(p \nmid |T| \). Then \(A \oplus (pT) = \mathbb{Z}_N \).

Corollary
Suppose \(A \oplus T = \mathbb{Z}_N \) and \(M \in \mathbb{N} \) such that \(\gcd(|T|, M) = 1 \). Then \(A \oplus (MT) = \mathbb{Z}_N \).

Corollary
Suppose \(A \oplus T = \mathbb{Z}_N \) with \(N \) square-free and \(M = |A| \). Then \(A \oplus (MT) = \mathbb{Z}_N \).

This was used by Łaba and Meyerowitz to prove \((T-S(\mathbb{Z}_N))\), for \(N \) square-free (Tao's blog, ’11).
Let $A \oplus T = \mathbb{Z}_N$, with $|A| = M$. Suppose first $\gcd(M, |T|) = 1$. Then $|MT| = |T| = N/M$ and $MT \subseteq M\mathbb{Z}_N$, hence $MT = M\mathbb{Z}_N$. This shows that A tiles by the subgroup $M\mathbb{Z}_N$, whence

$$A(X) \equiv 1 + X + \cdots + X^{M-1} \mod (X^M - 1),$$

and A clearly satisfies (T2).
Let $A \oplus T = \mathbb{Z}_N$, with $|A| = M$. Suppose first $\gcd(M, |T|) = 1$. Then $|MT| = |T| = N/M$ and $MT \subseteq M\mathbb{Z}_N$, hence $MT = M\mathbb{Z}_N$. This shows that A tiles by the subgroup $M\mathbb{Z}_N$, whence

$$A(X) \equiv 1 + X + \cdots + X^{M-1} \mod (X^M - 1),$$

and A clearly satisfies (T2).
Let $A \oplus T = \mathbb{Z}_N$, with $\gcd(|A|, |T|) > 1$. Then

$$\Phi_{\ell_1}(X) \cdots \Phi_{\ell_r}(X) \Phi_{p_2}(X) \cdots \Phi_{p_k}(X) \mid A(X)$$
Let $A \oplus T = \mathbb{Z}_N$, with $\gcd(|A|, |T|) > 1$. Then

$$\Phi_{p_1^{\ell_1}}(X) \cdots \Phi_{p_1^{\ell_r}}(X)\Phi_{p_2}(X) \cdots \Phi_{p_k}(X) \mid A(X)$$

and

$$\Phi_{p_1^{m_1}}(X) \cdots \Phi_{p_1^{m_s}}(X)\Phi_{p_{k+1}}(X) \cdots \Phi_{p_n}(X) \mid T(X),$$
Let $A \oplus T = \mathbb{Z}_N$, with $\gcd(|A|, |T|) > 1$. Then

$$\Phi_{p_1^{\ell_1}}(X) \cdots \Phi_{p_1^{\ell_r}}(X) \Phi_{p_2}(X) \cdots \Phi_{p_k}(X) \mid A(X)$$

and

$$\Phi_{p_1^{m_1}}(X) \cdots \Phi_{p_1^{m_s}}(X) \Phi_{p_{k+1}}(X) \cdots \Phi_{p_n}(X) \mid T(X),$$

where $\{\ell_1, \ldots, \ell_r\}$ and $\{m_1, \ldots, m_s\}$ form a partition of $\{1, 2, \ldots, m\}$.
Let $A \oplus T = \mathbb{Z}_N$, with $\gcd(|A|, |T|) > 1$. Then

$$\Phi_{p_1^{\ell_1}}(X) \cdots \Phi_{p_1^{\ell_r}}(X) \Phi_{p_2}(X) \cdots \Phi_{p_k}(X) \mid A(X)$$

and

$$\Phi_{p_1^{m_1}}(X) \cdots \Phi_{p_1^{m_s}}(X) \Phi_{p_{k+1}}(X) \cdots \Phi_{p_n}(X) \mid T(X),$$

where $\{\ell_1, \ldots, \ell_r\}$ and $\{m_1, \ldots, m_s\}$ form a partition of $\{1, 2, \ldots, m\}$. Let $M = p_2 \cdots p_k$, so that $A \oplus (MT) = \mathbb{Z}_N$ and

$$\Phi_{p_1^{m_1}}(X) \cdots \Phi_{p_1^{m_s}}(X) \Phi_{p_{k+1}}(X) \cdots \Phi_{p_n}(X) \mid T(X^M).$$
Let $A \oplus T = \mathbb{Z}_N$, with $\gcd(|A|, |T|) > 1$. Then

$$\Phi_{p_1^{\ell_1}}(X) \cdots \Phi_{p_1^{\ell_r}}(X) \Phi_{p_2}(X) \cdots \Phi_{p_k}(X) \mid A(X)$$

and

$$\Phi_{p_1^{m_1}}(X) \cdots \Phi_{p_1^{m_s}}(X) \Phi_{p_{k+1}}(X) \cdots \Phi_{p_n}(X) \mid T(X),$$

where $\{\ell_1, \ldots, \ell_r\}$ and $\{m_1, \ldots, m_s\}$ form a partition of $\{1, 2, \ldots, m\}$. Let $M = p_2 \cdots p_k$, so that $A \oplus (MT) = \mathbb{Z}_N$ and

$$\Phi_{p_1^{m_1}}(X) \cdots \Phi_{p_1^{m_s}}(X) \Phi_{p_{k+1}}(X) \cdots \Phi_{p_n}(X) \mid T(X^M).$$
Let $d \mid M$ be composite. Then $A(\zeta_d)T(\zeta_d^M) = 0$ and $T(\zeta_d^M) = T(1) \neq 0$, hence $A(\zeta_d) = 0$, confirming (T2) for any set of primes dividing M.

Next, consider $p_1^j d$, where $d \mid M$, $d > 1$.

(\text{T-S}(\mathbb{Z}_N)), \ N = p_1^m p_2 \cdots p_n
Let \(d \mid M \) be composite. Then \(A(\zeta_d) T(\zeta_d^M) = 0 \) and
\(T(\zeta_d^M) = T(1) \neq 0 \), hence \(A(\zeta_d) = 0 \), confirming (T2) for any set of primes dividing \(M \).

Next, consider \(p_1^{\ell_j} d \), where \(d \mid M, d > 1 \). We have

\[
T(\zeta_{p_1^{\ell_j} d}^M) = T(\zeta_{p_1^{\ell_j} / d}^M) = \sigma(T(\zeta_{p_1^{\ell_j}})) \neq 0,
\]

for some \(\sigma \in \text{Gal} (\mathbb{Q}(\zeta_{p_1^{\ell_j}})/\mathbb{Q}) \), hence \(A(\zeta_{p_1^{\ell_j}}) = 0 \), confirming (T2) for \(A \) completely.
Let $d \mid M$ be composite. Then $A(\zeta_d) T(\zeta_d^M) = 0$ and
$T(\zeta_d^M) = T(1) \neq 0$, hence $A(\zeta_d) = 0$, confirming (T2) for any set of primes dividing M.

Next, consider $p_1^{\ell_j}d$, where $d \mid M$, $d > 1$. We have

$$T(\zeta_d^M_{p_1^{\ell_j}d}) = T(\zeta_d^M_{p_1^{\ell_j}}) = \sigma(T(\zeta_d^M_{p_1^{\ell_j}})) \neq 0,$$

for some $\sigma \in \text{Gal}(\mathbb{Q}(\zeta_{p_1^{\ell_j}})/\mathbb{Q})$, hence $A(\zeta_{p_1^{\ell_j}}) = 0$, confirming (T2) for A completely.
Vanishing sums of roots of unity

Lemma

Let \(\text{rad}(N) = pq \) and \(A(X) \in \mathbb{Z}[X] \) with nonnegative coefficients, such that \(A(\zeta_N^d) = 0 \), for some \(d \mid N \). Then,

\[
A(X^d) \equiv P(X^d) \Phi_p(X^{N/p}) + Q(X^d) \Phi_q(X^{N/q}) \mod (X^N - 1),
\]

where \(P(X), Q(X) \in \mathbb{Z}[X] \) can be taken with nonnegative coefficients.

- The polynomial \(A(X^d) \) is the mask polynomial of the multiset \(d \cdot A \).
Lemma

Let $\text{rad}(N) = pq$ and $A(X) \in \mathbb{Z}[X]$ with nonnegative coefficients, such that $A(\zeta_N^d) = 0$, for some $d \mid N$. Then,

$$A(X^d) \equiv P(X^d)\Phi_p(X^{N/p}) + Q(X^d)\Phi_q(X^{N/q}) \mod (X^N - 1),$$

where $P(X), Q(X) \in \mathbb{Z}[X]$ can be taken with nonnegative coefficients.

- The polynomial $A(X^d)$ is the mask polynomial of the multiset $d \cdot A$.
- $\Phi_p(X^{N/p})$ is the mask polynomial of the subgroup $\frac{N}{p} \mathbb{Z}_N$. Its cosets are called p-cycles.
Lemma

Let \(\text{rad}(N) = pq \) and \(A(X) \in \mathbb{Z}[X] \) with nonnegative coefficients, such that \(A(\zeta_d^N) = 0 \), for some \(d \mid N \). Then,

\[
A(X^d) \equiv P(X^d)\Phi_p(X^{N/p}) + Q(X^d)\Phi_q(X^{N/q}) \mod (X^N - 1),
\]

where \(P(X), Q(X) \in \mathbb{Z}[X] \) can be taken with nonnegative coefficients.

- The polynomial \(A(X^d) \) is the mask polynomial of the multiset \(d \cdot A \).
- \(\Phi_p(X^{N/p}) \) is the mask polynomial of the subgroup \(\frac{N}{p}\mathbb{Z}_N \). Its cosets are called \(p \)-cycles.
- The above Lemma shows that if \(A(\zeta_N) = 0 \), then \(A \) is the disjoint union of \(p \)- and \(q \)-cycles.
Lemma

Let \(\text{rad}(N) = pq \) and \(A(X) \in \mathbb{Z}[X] \) with nonnegative coefficients, such that \(A(\zeta^d_N) = 0 \), for some \(d \mid N \). Then,

\[
A(X^d) \equiv P(X^d)\Phi_p(X^{N/p}) + Q(X^d)\Phi_q(X^{N/q}) \mod (X^N - 1),
\]

where \(P(X), Q(X) \in \mathbb{Z}[X] \) can be taken with nonnegative coefficients.

- The polynomial \(A(X^d) \) is the mask polynomial of the multiset \(d \cdot A \).
- \(\Phi_p(X^{N/p}) \) is the mask polynomial of the subgroup \(\frac{N}{p} \mathbb{Z}_N \). Its cosets are called \(p \)-cycles.
- The above Lemma shows that if \(A(\zeta_N) = 0 \), then \(A \) is the disjoint union of \(p \)- and \(q \)-cycles.
Let \((A, B)\) be a spectral pair in \(\mathbb{Z}_N\). Wlog, \(0 \in A \cap B\) and each of \(A, B\) generates \(\mathbb{Z}_N\).

Lemma
Let \(0 \in A \subseteq \mathbb{Z}_N\), such that \(A\) generates \(\mathbb{Z}_N\), \(N = p^mq^n\). Then,
\[
(A - A) \cap \mathbb{Z}_N^* \neq \emptyset.
\]
Let \((A, B)\) be a spectral pair in \(\mathbb{Z}_N\). Wlog, \(0 \in A \cap B\) and each of \(A, B\) generates \(\mathbb{Z}_N\).

Lemma

Let \(0 \in A \subseteq \mathbb{Z}_N\), such that \(A\) generates \(\mathbb{Z}_N\), \(N = p^m q^n\). Then,

\[
(A - A) \cap \mathbb{Z}_N^* \neq \emptyset.
\]

Proof.

There are \(a \notin p\mathbb{Z}_N\) and \(a' \notin q\mathbb{Z}_N\).
Let (A, B) be a spectral pair in \mathbb{Z}_N. Wlog, $0 \in A \cap B$ and each of A, B generates \mathbb{Z}_N.

Lemma

Let $0 \in A \subseteq \mathbb{Z}_N$, such that A generates \mathbb{Z}_N, $N = p^m q^n$. Then,

$$(A - A) \cap \mathbb{Z}_N^* \neq \emptyset.$$

Proof.

There are $a \notin p\mathbb{Z}_N$ and $a' \notin q\mathbb{Z}_N$. If $a \notin q\mathbb{Z}_N$, then $a \in \mathbb{Z}_N^*$.
Let \((A, B)\) be a spectral pair in \(\mathbb{Z}_N\). Wlog, \(0 \in A \cap B\) and each of \(A, B\) generates \(\mathbb{Z}_N\).

Lemma

Let \(0 \in A \subseteq \mathbb{Z}_N\), such that \(A\) generates \(\mathbb{Z}_N\), \(N = p^m q^n\). Then,

\[(A - A) \cap \mathbb{Z}_N^* \neq \emptyset.\]

Proof.

There are \(a \notin p\mathbb{Z}_N\) and \(a' \notin q\mathbb{Z}_N\). If \(a \notin q\mathbb{Z}_N\), then \(a \in \mathbb{Z}_N^*\), and similarly, if \(a' \notin p\mathbb{Z}_N\), then \(a' \in \mathbb{Z}_N^*\).
Let \((A, B)\) be a spectral pair in \(\mathbb{Z}_N\). Wlog, \(0 \in A \cap B\) and each of \(A, B\) generates \(\mathbb{Z}_N\).

Lemma

Let \(0 \in A \subseteq \mathbb{Z}_N\), such that \(A\) generates \(\mathbb{Z}_N\), \(N = p^m q^n\). Then,

\[
(A - A) \cap \mathbb{Z}_N^* \neq \emptyset.
\]

Proof.

There are \(a \notin p\mathbb{Z}_N\) and \(a' \notin q\mathbb{Z}_N\). If \(a \notin q\mathbb{Z}_N\), then \(a \in \mathbb{Z}_N^*\), and similarly, if \(a' \notin p\mathbb{Z}_N\), then \(a' \in \mathbb{Z}_N^*\). If \(a \in q\mathbb{Z}_N\) and \(a' \in p\mathbb{Z}_N\), then \(a - a' \in \mathbb{Z}_N^*\).
Let \((A, B)\) be a spectral pair in \(\mathbb{Z}_N\). Wlog, \(0 \in A \cap B\) and each of \(A, B\) generates \(\mathbb{Z}_N\).

Lemma

Let \(0 \in A \subseteq \mathbb{Z}_N\), such that \(A\) generates \(\mathbb{Z}_N\), \(N = p^m q^n\). Then,

\[(A - A) \cap \mathbb{Z}_N^\star \neq \emptyset.\]

Proof.

There are \(a \notin p\mathbb{Z}_N\) and \(a' \notin q\mathbb{Z}_N\). If \(a \notin q\mathbb{Z}_N\), then \(a \in \mathbb{Z}_N^\star\), and similarly, if \(a' \notin p\mathbb{Z}_N\), then \(a' \in \mathbb{Z}_N^\star\). If \(a \in q\mathbb{Z}_N\) and \(a' \in p\mathbb{Z}_N\), then \(a - a' \in \mathbb{Z}_N^\star\).
Therefore,

\[(A - A) \cap \mathbb{Z}_N^* \neq \emptyset \neq (B - B) \cap \mathbb{Z}_N^*,\]

which implies

\[A(\zeta_N) = B(\zeta_N) = 0.\]
Therefore,

\[(A - A) \cap \mathbb{Z}_N^* \neq \emptyset \neq (B - B) \cap \mathbb{Z}_N^*,\]

which implies

\[A(\zeta_N) = B(\zeta_N) = 0.\]
Therefore,

\[(A - A) \cap \mathbb{Z}_N^* \neq \emptyset \neq (B - B) \cap \mathbb{Z}_N^*,\]

which implies

\[A(\zeta_N) = B(\zeta_N) = 0.\]

Theorem (Lam & Leung)

If \(A \subseteq \mathbb{Z}_N\) with \(A(\zeta_N) = \sum_{a \in A} \zeta_N^a = 0\), \(N = p^m q^n\), then \(A\) is a disjoint union of cosets of the subgroups \(\frac{N}{p} \mathbb{Z}_N\) and \(\frac{N}{q} \mathbb{Z}_N\).

Any two cosets of \(p\mathbb{Z}_{pq}\) and \(q\mathbb{Z}_{pq}\) intersect, so \(A\) (and \(B\)) is a disjoint union of cosets of \(p\mathbb{Z}_{pq}\) (say).
Therefore,

$$(A - A) \cap \mathbb{Z}_N^* \neq \emptyset \neq (B - B) \cap \mathbb{Z}_N^*,$$

which implies

$$A(\zeta_N) = B(\zeta_N) = 0.$$

Theorem (Lam & Leung)

If $A \subseteq \mathbb{Z}_N$ with $A(\zeta_N) = \sum_{a \in A} \zeta_N^a = 0$, $N = p^m q^n$, then A is a disjoint union of cosets of the subgroups $\frac{N}{p} \mathbb{Z}_N$ and $\frac{N}{q} \mathbb{Z}_N$.

Any two cosets of $p\mathbb{Z}_{pq}$ and $q\mathbb{Z}_{pq}$ intersect, so A (and B) is a disjoint union of cosets of $p\mathbb{Z}_{pq}$ (say).
Since B is also a union of cosets of $p\mathbb{Z}_{pq}$, we have $p\mathbb{Z}_{pq} \subseteq B - B$, hence

$$A(\zeta_q) = 0.$$

If $A(\zeta_p) = 0$, then $p \mid |A|$ and $A = \mathbb{Z}_N$.
Since B is also a union of cosets of $p\mathbb{Z}_{pq}$, we have $p\mathbb{Z}_{pq} \subseteq B - B$, hence

$$A(\zeta_q) = 0.$$

If $A(\zeta_p) = 0$, then $p \mid |A|$ and $A = \mathbb{Z}_{N}$. Otherwise, $(B - B) \cap q\mathbb{Z}_{pq} = \{0\}$, hence each element of B is unique mod q, giving $|A| \leq q$.

R. D. Malikiosis

Recent developments in the discrete Fuglede conjecture
Since B is also a union of cosets of $p\mathbb{Z}_{pq}$, we have $p\mathbb{Z}_{pq} \subseteq B - B$, hence

$$A(\zeta_q) = 0.$$

If $A(\zeta_p) = 0$, then $p \mid |A|$ and $A = \mathbb{Z}_N$. Otherwise,

$$(B - B) \cap q\mathbb{Z}_{pq} = \{0\},$$

hence each element of B is unique mod q, giving $|A| \leq q$. Thus, A is a single coset of $p\mathbb{Z}_{pq}$, which tiles \mathbb{Z}_{pq}.

Since B is also a union of cosets of $p\mathbb{Z}_{pq}$, we have $p\mathbb{Z}_{pq} \subseteq B - B$, hence

\[A(\zeta_q) = 0. \]

If $A(\zeta_p) = 0$, then $p \mid |A|$ and $A = \mathbb{Z}_N$. Otherwise, $(B - B) \cap q\mathbb{Z}_{pq} = \{0\}$, hence each element of B is unique mod q, giving $|A| \leq q$. Thus, A is a single coset of $p\mathbb{Z}_{pq}$, which tiles \mathbb{Z}_{pq}.

(S-T(\mathbb{Z}_N)), $N = pq$
Suppose \((S\cdot T(\mathbb{Z}_N))\) fails, but holds for any proper subgroup of \(\mathbb{Z}_N\).

Let \(A \subseteq \mathbb{Z}_N\) be a maximal spectral non-tile, with spectrum \(B\).
1. Suppose \((S-T(\mathbb{Z}_N))\) fails, but holds for any proper subgroup of \(\mathbb{Z}_N\).

2. Let \(A \subseteq \mathbb{Z}_N\) be a maximal spectral non-tile, with spectrum \(B\).

3. Both \(A\) and \(B\) must be primitive, which implies

 \[A(\zeta_N) = B(\zeta_N) = 0. \]

4. This in turn implies

 \[A(\zeta_p) = A(\zeta_q) = B(\zeta_p) = B(\zeta_q) = 0. \]
Suppose \((S-T(\mathbb{Z}_N))\) fails, but holds for any proper subgroup of \(\mathbb{Z}_N\).

Let \(A \subseteq \mathbb{Z}_N\) be a maximal spectral non-tile, with spectrum \(B\).

Both \(A\) and \(B\) must be primitive, which implies \(A(\zeta_N) = B(\zeta_N) = 0\).

This in turn implies \(A(\zeta_p) = A(\zeta_q) = B(\zeta_p) = B(\zeta_q) = 0\).

Actually, both \(A(X)\) and \(B(X)\) vanish at \(\zeta_{pq}, \zeta_{p^m}, \zeta_{q^n}, \zeta_{p^mq}, \zeta_{pq^n}\). If \(p < q\), they both vanish at \(\zeta_{p^2}\).
1. Suppose \((S-T(\mathbb{Z}_N))\) fails, but holds for any proper subgroup of \(\mathbb{Z}_N\).

2. Let \(A \subseteq \mathbb{Z}_N\) be a maximal spectral non-tile, with spectrum \(B\).

3. Both \(A\) and \(B\) must be \textit{primitive}, which implies \(A(\zeta_N) = B(\zeta_N) = 0\).

4. This in turn implies \(A(\zeta_p) = A(\zeta_q) = B(\zeta_p) = B(\zeta_q) = 0\).

5. Actually, both \(A(X)\) and \(B(X)\) vanish at \(\zeta_{pq}, \zeta_{p^m}, \zeta_{q^n}, \zeta_{p^mq}, \zeta_{pq^n}\). If \(p < q\), they both vanish at \(\zeta_{p^2}\).

6. If \(A(X)\) vanishes at \(\zeta_{p^{m_1}}, \ldots, \zeta_{p^{m_r}}, \zeta_{q^{n_1}}, \ldots, \zeta_{q^{n_s}}\), then

\[p^{r+1} q^{s+1} | |A| \]

This establishes a contradiction if either \(m\) or \(n\) is small, or \(p^{m-2} < q^4\).
(S-T(\mathbb{Z}_N)), \ N = p^m q^n \ (\text{sketch})

1. Suppose \((S-T(\mathbb{Z}_N))\) fails, but holds for any proper subgroup of \(\mathbb{Z}_N\).

2. Let \(A \subseteq \mathbb{Z}_N\) be a maximal spectral non-tile, with spectrum \(B\).

3. Both \(A\) and \(B\) must be \textit{primitive}, which implies \(A(\zeta_N) = B(\zeta_N) = 0\).

4. This in turn implies \(A(\zeta_p) = A(\zeta_q) = B(\zeta_p) = B(\zeta_q) = 0\).

5. Actually, both \(A(X)\) and \(B(X)\) vanish at \(\zeta_{pq}, \zeta_{p^m}, \zeta_{q^n}, \zeta_{p^mq}, \zeta_{pq^n}\). If \(p < q\), they both vanish at \(\zeta_{p^2}\).

6. If \(A(X)\) vanishes at \(\zeta_{p^{m_1}}, \ldots, \zeta_{p^{m_r}}, \zeta_{q^{n_1}}, \ldots, \zeta_{q^{n_s}}\), then

\[p^{r+1} q^{s+1} \mid |A|. \]

This establishes a contradiction if either \(m\) or \(n\) is small, or \(p^{m-2} < q^4\).
The following hold for cyclic groups $G = \mathbb{Z}_N$:

- If $N = p_1^n p_2 \cdots p_m$, then $(T-S(\mathbb{Z}_N))$ (M, '20).

- Let $p < q$; Fuglede's conjecture holds if $N = p^m q^n$ with $m \leq 9$ or $n \leq 6$ (M, '20).

- Let $p < q$; Fuglede's conjecture holds if $N = p^m q^n$ with $p^m - 2 < q^4$ (M, '20).

- Fuglede's conjecture holds if $N = pqr$ (Kiss, M, Somlai, Vizer, '20).

- If $N = (pqr)^2$, then $(T-S(\mathbb{Z}_N))$ (Laba, Londner, '21).
Cyclic groups

The following hold for cyclic groups $G = \mathbb{Z}_N$:

- If $N = p_1^n p_2 \cdots p_m$, then $(T-S(\mathbb{Z}_N))$ (M, '20).
- If $N = p^m q^n$, then $(T-S(\mathbb{Z}_N))$ (Łaba, '02).
The following hold for cyclic groups \(G = \mathbb{Z}_N \):

- If \(N = p_1^n p_2 \cdots p_m \), then \((T-S(\mathbb{Z}_N))\) (M, ’20).
- If \(N = p^m q^n \), then \((T-S(\mathbb{Z}_N))\) (Łaba, ’02).
- Fuglede’s conjecture holds if \(N = p^2 qr \) (Somlai, ’19).
Cyclic groups

The following hold for cyclic groups $G = \mathbb{Z}_N$:

- If $N = p_1^n p_2 \cdots p_m$, then $(\mathbf{T-S}(\mathbb{Z}_N))$ (M, ’20).
- If $N = p^m q^n$, then $(\mathbf{T-S}(\mathbb{Z}_N))$ (Łaba, ’02).
- Fuglede’s conjecture holds if $N = p^2 qr$ (Somlai, ’19).
- Let $p < q$; Fuglede’s conjecture holds if $N = p^m q^n$ with $m \leq 9$ or $n \leq 6$ (M, ’20).
The following hold for cyclic groups $G = \mathbb{Z}_N$:

- If $N = p_1^{n_1} p_2 \cdots p_m$, then $(T-S(\mathbb{Z}_N))$ (M, ’20).
- If $N = p^m q^n$, then $(T-S(\mathbb{Z}_N))$ (Łaba, ’02).
- Fuglede’s conjecture holds if $N = p^2 q r$ (Somlai, ’19).
- Let $p < q$; Fuglede’s conjecture holds if $N = p^m q^n$ with $m \leq 9$ or $n \leq 6$ (M, ’20).
- Let $p < q$; Fuglede’s conjecture holds if $N = p^m q^n$ with $p^{m-2} < q^4$ (M, ’20).
Cyclic groups

The following hold for cyclic groups $G = \mathbb{Z}_N$:

- If $N = p_1^n p_2 \cdots p_m$, then $(T-S(\mathbb{Z}_N))$ (M, '20).
- If $N = p^m q^n$, then $(T-S(\mathbb{Z}_N))$ (Łaba, '02).
- Fuglede’s conjecture holds if $N = p^2 q r$ (Somlai, '19).
- Let $p < q$; Fuglede’s conjecture holds if $N = p^m q^n$ with $m \leq 9$ or $n \leq 6$ (M, '20).
- Let $p < q$; Fuglede’s conjecture holds if $N = p^m q^n$ with $p^{m-2} < q^4$ (M, '20).
- Fuglede’s conjecture holds if $N = p q r s$ (Kiss, M, Somlai, Vizer, '20).
The following hold for cyclic groups $G = \mathbb{Z}_N$:

- If $N = p_1^n p_2 \cdots p_m$, then $(T\text{-}S(\mathbb{Z}_N))$ (M, '20).
- If $N = p^m q^n$, then $(T\text{-}S(\mathbb{Z}_N))$ (Łaba, '02).
- Fuglede’s conjecture holds if $N = p^2 q r$ (Somlai, '19).
- Let $p < q$; Fuglede’s conjecture holds if $N = p^m q^n$ with $m \leq 9$ or $n \leq 6$ (M, '20).
- Let $p < q$; Fuglede’s conjecture holds if $N = p^m q^n$ with $p^{m-2} < q^4$ (M, '20).
- Fuglede’s conjecture holds if $N = pqrs$ (Kiss, M, Somlai, Vizer, '20).
- If $N = (pqr)^2$, then $(T\text{-}S(\mathbb{Z}_N))$ (Łaba, Londner, '21).
The following hold for cyclic groups \(G = \mathbb{Z}_N \):

- If \(N = p_1^n p_2 \cdots p_m \), then \((\text{TS}(\mathbb{Z}_N))\) (M, ’20).
- If \(N = p^m q^n \), then \((\text{TS}(\mathbb{Z}_N))\) (Łaba, ’02).
- Fuglede’s conjecture holds if \(N = p^2 q r \) (Somlai, ’19).
- Let \(p < q \); Fuglede’s conjecture holds if \(N = p^m q^n \) with \(m \leq 9 \) or \(n \leq 6 \) (M, ’20).
- Let \(p < q \); Fuglede’s conjecture holds if \(N = p^m q^n \) with \(p^{m-2} < q^4 \) (M, ’20).
- Fuglede’s conjecture holds if \(N = pq rs \) (Kiss, M, Somlai, Vizer, ’20).
- If \(N = (pq r)^2 \), then \((\text{TS}(\mathbb{Z}_N))\) (Łaba, Londner, ’21).
Thank you