





MTM2016-76566-P PID2019-105599GB-I00

GHAIA Project 777822

# Spaces Invariant under Unitary Representations and the Bracket.

Eugenio Hernández

Universidad Autónoma de Madrid (Spain)

CodEx Seminar

February 9, 2021



#### The Bracket

For  $f, g \in L^2(\mathbb{R}^d)$ ,

$$[f,g](x) = \sum_{k \in \mathbb{Z}^d} f(x+k)\overline{g(x+k)}, \quad x \in \mathbb{R}^d.$$

- $[f, f](x) \ge 0$  a. e.  $x \in \mathbb{R}^d$  and  $[f, f] \equiv 0 \iff f \equiv 0$ .
- ullet  $[\cdot,\cdot]$  is a sesquilinear hermitian symmetric map.
- [f,g] is  $\mathbb{Z}^d$ -periodic and

$$\int_{[0,1)^d} |[f,g](x)| dx \leqslant ||f||_2 ||g||_2.$$

The bracket defines and  $L^1([0,1)^d)$ -valued inner product in the Hilbert space  $L^2(\mathbb{R}^d)$ .

Jia, Michelli (1991); de Boor, DeVore, Ron (1994).



#### Results with the bracket

• With  $T_k g(x) = g(x+k)$ 

$$\langle f, T_k g \rangle_2 = \int_{\mathbb{R}^d} \widehat{f}(\omega) \overline{\widehat{g}(\omega)} e^{-2\pi i k \cdot \omega} d\omega = \int_{[0,1)^d} [\widehat{f}, \widehat{g}](\omega) e^{-2\pi i k \cdot \omega} d\omega.$$
(1)

Denote by  $\langle f \rangle_{\mathbb{Z}^d} := \overline{\text{span}\{T_k f : k \in \mathbb{Z}^d\}}$  the shift-invariant space generated by  $f \in L^2(\mathbb{R}^d)$ ,

 $ullet \langle f 
angle_{\mathbb{Z}^d} \perp \langle g 
angle_{\mathbb{Z}^d} \Longleftrightarrow [\widehat{f},\widehat{g}](\omega) = 0 \text{ a.e. } \omega \in [0,1)^d.$ 

For  $f \in L^2(\mathbb{R}^d)$  denote by  $\mathcal{M}_f$  the space of all  $m : \mathbb{R}^d \to \mathbb{C}$  that are  $\mathbb{Z}^d$ -periodic and

$$\|m\|_{\mathcal{M}_f} := \left(\int_{[0,1)^d} |m(\omega)|^2 [\widehat{f},\widehat{f}](\omega) d\omega\right)^{1/2} < \infty.$$

#### Results with the bracket

- Let  $f \in L^2(\mathbb{R}^d)$ . The map  $J_f$  defined by  $J_f(m) = (m\widehat{f})^{\sim}$  is an isometric isomorphism from  $\mathcal{M}_f$  onto  $\langle f \rangle_{\mathbb{Z}^d}$ .
- Corollary:  $g \in \langle f \rangle_{\mathbb{Z}^d}$  if and only if there exists  $m \in \mathcal{M}_f$  such that  $\hat{g} = m\hat{f}$ .
- Denote by  $\mathbb{P}_{\langle f \rangle_{\mathbb{Z}^d}}$  the orthogonal projection of  $L^2(\mathbb{R}^d)$  onto  $\langle f \rangle_{\mathbb{Z}^d}$ . Then,

$$(\mathbb{P}_{\langle f \rangle_{\mathbb{Z}^d}}(g))^{\hat{}} = \frac{[\widehat{g},\widehat{f}]}{[\widehat{f},\widehat{f}]} \mathbf{1}_{\{[\widehat{f},\widehat{f}]>0\}} \widehat{f}.$$

## Reproducing properties of $\mathcal{O}(f) = \{T_k f : k \in \mathbb{Z}^d\}$

- (a)  $\mathcal{O}(f)$  is an orthonormal basis for  $\langle f \rangle_{\mathbb{Z}^d} \iff [\hat{f}, \hat{f}] = 1$  a.e.
- **(b)**  $\mathcal{O}(f)$  is a Riesz basis for  $\langle f \rangle_{\mathbb{Z}^d}$  with bounds  $0 < A \leqslant B < \infty$   $\iff A \leqslant [\widehat{f}, \widehat{f}] \leqslant B$  a.e.
- (c)  $\mathcal{O}(f)$  is a frame for  $\langle f \rangle_{\mathbb{Z}^d}$  with bounds  $0 < A \leqslant B < \infty$   $\iff A\mathbf{1}_{\{[\widehat{f},\widehat{f}]>0\}} \leqslant [\widehat{f},\widehat{f}] \leqslant B\mathbf{1}_{\{[\widehat{f},\widehat{f}]>0\}}$  a.e.
- (a) appears in a paper of R. P. Gosselin (1963) dedicated to the study of cardinal series.

Earliest reference to **(c)** is due to J. Benedetto and S. Li (1993/1998). This result follows from the representation of the Frame operator of  $\mathcal{O}(f)$ ,

$$\mathcal{F}_f(g) := \sum_{k \in \mathbb{Z}^d} \langle g, T_k f \rangle T_k f, \quad g \in \langle f \rangle_{\mathbb{Z}^d},$$

in terms of the bracket:  $\mathcal{F}_f(g)^{\hat{}} = [\hat{f}, \hat{f}]\hat{g}$ .

# Other results for $\mathcal{O}(f) = \{T_k f : k \in \mathbb{Z}^d\}$

- (a)  $\mathcal{O}(f)$  has a biorthogonal system of the form  $\mathcal{O}(\widetilde{f})$  with  $\widetilde{f} \in \langle f \rangle_{\mathbb{Z}^d}$   $\iff \frac{1}{[\widehat{f},\widehat{f}]} \in L^1([0,1)^d)$ . In this case  $\widehat{\widetilde{f}} = \frac{1}{[\widehat{f},\widehat{f}]}\widehat{f}$ .
- **(b)** (d=1)  $\mathcal{O}(f)$  is  $\ell^2$ -linearly independent in  $L^2(\mathbb{R})(*) \iff [\widehat{f},\widehat{f}] > 0$  a.e.
- (c) (d=1)  $\mathcal{O}(f)$  is a Schauder basis for  $\langle f \rangle_{\mathbb{Z}} \iff [\hat{f}, \hat{f}]$  is a Muckenhoupt  $A_2$  weight in [0,1).

(\*) A sequence  $(x_n)_{n=1}^{\infty}$  in a Hilbert space  $\mathbb H$  is  $\ell^2$ -linearly independent if whenever  $(c_n)_{n=1}^{\infty} \in \ell^2(\mathbb N)$  and  $\lim_{n \to \infty} \|\sum_{k=1}^n c_n x_n\| = 0$ , then  $c_n = 0$  for all

 $n \in \mathbb{N}$ .

## **Group von Neumann algebras**

Let  $\Gamma$  be a discrete countable group.

- The right regular representation of  $\Gamma$  is  $\rho: \Gamma \to \mathcal{U}(\ell^2(\Gamma))$  given by  $(\rho(\gamma)a)(\gamma_1) = a(\gamma_1\gamma)$  or equivalently  $\rho(\gamma)\delta_{\gamma_1} = \delta_{\gamma_1\gamma^{-1}}$ .
- ullet The right von Neumann algebra of  $\Gamma$  is

$$\mathcal{R}(\Gamma) := \overline{\operatorname{span} \left\{ \rho(\gamma) : \gamma \in \Gamma \right\}}^{WOT}.$$

- The trace of  $F \in \mathcal{R}(\Gamma)$  is given by  $\tau(F) = \langle F \delta_e, \delta_e \rangle_{\ell^2(\Gamma)}$ .
- For  $1 \le p < \infty$ , and  $F \in \mathcal{R}(\Gamma)$ , let  $\|F\|_p := (\tau(|F|^p))^{1/p}$ , where  $|F| = \sqrt{F^*F}$ .

The left regular representation of  $\Gamma$  is  $\lambda:\Gamma\to \mathcal{U}(\ell^2(\Gamma))$  given by  $(\lambda(\gamma)a)(\gamma_1)=a(\gamma^{-1}\gamma_1)$  or equivalently  $\lambda(\gamma)\delta_{\gamma_1}=\delta_{\gamma\gamma_1}$ .

#### Non commutative Lebesgue spaces

• Non commutative Lebesgue spaces over  $\Gamma$ : For  $1 \le p < \infty$ ,

$$L^p(\mathcal{R}(\Gamma)) := \overline{\operatorname{span} \left\{ \rho(\gamma) : \gamma \in \Gamma \right\}^{\|\cdot\|_p}}.$$

and  $L^{\infty}(\mathcal{R}(\Gamma)) := \mathcal{R}(\Gamma)$  with the operator norm.

• The trace can be defined for any element of  $L^p(\mathcal{R}(\Gamma)),\ 1\leqslant p\leqslant \infty$  and

$$L^{\infty}(\mathcal{R}(\Gamma)) \subset L^{p}(\mathcal{R}(\Gamma)) \subset L^{1}(\mathcal{R}(\Gamma))$$
.

•  $L^2(\mathcal{R}(\Gamma))$  is a Hilbert space with

$$\langle F_1, F_2 \rangle_2 = \tau(F_2^* F_1)$$

and  $\{\rho(\gamma): \gamma \in \Gamma\}$  is an orthonormal basis of  $L^2(\mathcal{R}(\Gamma))$ .



#### **Plancherel Theorem**

• For  $F \in L^1(\mathcal{R}(\Gamma))$  its Fourier coefficients are defined by

$$\hat{F}(\gamma) = \tau(F\rho(\gamma)), \ \gamma \in \Gamma.$$

• For  $a \in \ell^2(\Gamma)$  its Fourier series is defined by

$$\mathcal{F}_{\Gamma}(a) = \sum_{\gamma \in \Gamma} a(\gamma) \rho(\gamma)^*$$
 .

#### **Plancherel Theorem:**

(a) For 
$$F \in L^2(\mathcal{R}(\Gamma))$$
,  $\widehat{F} := (\widehat{F}(\gamma))_{\gamma \in \Gamma} \in \ell^2(\Gamma)$  and  $\|F\|_2 = \|\widehat{F}\|_{\ell^2(\Gamma)}$ .

(b) For 
$$a=(a(\gamma))_{\gamma\in\Gamma}\in\ell^2(\Gamma)$$
, the series  $\sum_{\gamma\in\Gamma}a(\gamma)\rho(\gamma)^*$  converges in the

 $L^2(\mathcal{R}(\Gamma))$  norm to an operator  $F:=\mathcal{F}_{\Gamma}(a)\in L^2(\mathcal{R}(\Gamma))$  such that  $\widehat{F}(\gamma)=a(\gamma)$  and

$$\|\mathcal{F}_{\Gamma}(a)\|_{2} = \|a\|_{\ell^{2}(\Gamma)}.$$

### The support of a selfadjoint operator

• For  $F \in L^1(\mathcal{R}(\Gamma))$  selfadjoint, the **support** of F is the minimal orthogonal projection  $s_F$  of  $\ell^2(\Gamma)$  such that

$$F = s_F F = F s_F$$
.

• It holds that  $s_F \in \mathcal{R}(\Gamma)$  and

$$s_F = \mathbb{P}_{(\ker(F))^{\perp}} = \mathbb{P}_{\overline{\mathsf{Ran}(F)}}.$$

## **Dual integrable representations**

Let  $\Pi : \Gamma \longrightarrow \mathcal{U}(\mathbb{H})$  be a unitary representation of countable discrete group  $\Gamma$  on the Hilbert space  $\mathbb{H}$ .

Definition. The unitary representation Π is said to be dual integrable if there exists a function, called bracket,
 [·,·]<sub>Π</sub> : ℍ × ℍ ↦ L<sup>1</sup>(R(Γ)) such that

$$\langle f, \Pi(\gamma)g \rangle_{\mathbb{H}} = \tau([f,g]_{\Pi} \rho(\gamma)), \quad f,g \in \mathbb{H}, \gamma \in \Gamma.$$
 (2)

- The bracket of a dual integrable representation is sesquilinear map that satisfies
- (I)  $[f,g]_{\Pi}^* = [g,f]_{\Pi}$
- (II)  $[f, \Pi(\gamma)g]_{\Pi} = \rho(\gamma)[f, g]_{\Pi}$  and  $[\Pi(\gamma)f, g]_{\Pi} = [f, g]_{\Pi}\rho(\gamma)^*$
- (III)  $[f, f]_{\Pi}$  is nonnegative, and  $||[f, f]_{\Pi}||_1 = ||f||_{\mathbb{H}}^2$ .



#### **Equivalent conditions**

The following conditions are equivalent for a unitary representation  $\Pi$  of a discrete countable group  $\Gamma$  on a Hilbert space  $\mathbb{H}$ :

- Π is dual integrable
- Π is unitary equivalent to a subrepresentation of a direct sum of countable many copies of the right regular representation.
- $\Pi$  is square integrable, that is, there exists a dense subspace  $D \subset \mathbb{H}$  such that for each  $f \in D$ ,  $\sum_{\gamma \in \Gamma} |\langle g, \Pi(\gamma) f \rangle|^2 < \infty$  for all  $g \in \mathbb{H}$ .
- $\Pi$  admits a Helson map, that is, there exists a  $\sigma$ -finite measure space  $(M, \nu)$  and a linear isometry  $\mathcal{H} : \mathbb{H} \longrightarrow L^2(M, L^2(\mathcal{R}(\Gamma)))$  such that

$$\mathcal{H}[\Pi(\gamma)f](x) = \mathcal{H}[f](x)\rho(\gamma)^*, \qquad x \in M, \gamma \in \Gamma, \ f \in \mathbb{H}.$$

## **Example of Helson maps**

• If  ${\mathcal H}$  is a Helson map for a dual integrable representation  $\Pi,$  the bracket is given by

$$[f,g]_{\Pi} = \int_{M} \mathcal{H}[g](x)^* \mathcal{H}[f](x) d\nu(x), \quad f,g \in \mathbb{H}.$$

• Example 1: A Helson map for the left regular representation  $(\lambda(\gamma)a)(\gamma_1) = a(\gamma^{-1}\gamma_1)$  is the group Fourier series  $\mathcal{F}_{\Gamma}: \ell^2(\Gamma) \to L^2(\mathcal{R}(\Gamma))$  since it is a linear (surjective) isometry that satisfies

$$\mathcal{F}_{\Gamma}(\lambda(\gamma)a) = \mathcal{F}_{\Gamma}(a)\rho(\gamma)^*$$
.

Therefore.

$$[a,b]_{\lambda} = (\mathcal{F}_{\Gamma}(b))^* \mathcal{F}_{\Gamma}(a), \quad a,b \in \ell^2(\Gamma).$$



## **Example 2: The Gabor representation (abelian)**

ullet The Gabor representation  $\mathcal{G}:\mathbb{Z}^d imes\mathbb{Z}^d\mapsto\mathcal{U}(L^2(\mathbb{R}^d))$  is given by

$$\mathcal{G}(k,\ell)f(x) = T_k M_\ell f(x)) = e^{2\pi i x \cdot \ell} f(x+k), \quad x \in \mathbb{R}^d.$$

• A Helson map for  $\mathcal{G}$  is the **Zak transform**  $Z: L^2(\mathbb{R}^d) \longrightarrow L^2([0,1)^d \times [0,1)^d)$  given by

$$Zf(x,\omega) := \sum_{\ell \in \mathbb{Z}^d} f(x+\ell) e^{-2\pi i \ell \cdot \omega}$$

ullet Therefore  ${\cal G}$  is dual integrable and

$$[f,g]_{\mathcal{G}} = \overline{Zg} \cdot Zf$$
, on  $[0,1)^d \times [0,1)^d$ .

# **Group actions on** $L^2(X, \mu)$

•  $\sigma: \Gamma \times X \to X$  is an **action** if the map  $x \to \sigma_{\gamma}(x) := \sigma(\gamma, x)$  is  $\mu$ -measurable,  $\sigma(e, x) = x$  for all  $x \in X$ , and

$$\sigma(\gamma_1, \rho(\gamma_2, x)) = \sigma(\gamma_1 \gamma_2, x), \quad \gamma_1, \gamma_2 \in \Gamma, \ x \in X.$$

• The action  $\sigma$  is regular if for each  $\gamma \in \Gamma$  the measure  $\mu_{\gamma}(E) = \mu(\sigma_{\gamma}(E)), E \subset X$ , is absolutely continuous with respect to  $\mu$  with positive Radon-Nikodym derivative  $J_{\sigma} : \Gamma \times X \to \mathbb{R}^+$  so that

$$d\mu(\sigma_{\gamma}(x)) = J_{\sigma}(\gamma, x)d\mu(x).$$

• The action  $\sigma$  has the tiling property if there exists a  $\mu$ -measurable set  $C \subset X$  such that  $\{\sigma_{\gamma}(C)\}_{\gamma \in \Gamma}$  is a  $\mu$ -almost disjoint covering of X.

## Example 3

•  $\Pi_{\sigma}: \Gamma \to \mathcal{U}(L^2(X))$  given by

$$(\Pi_{\sigma}(\gamma)f)(x) = J_{\sigma}(\gamma, x)^{-1/2}f(\sigma(\gamma^{-1}, x))$$

is a unitary representation of  $\Gamma$  in  $L^2(X)$ .

• A Helson map for the representation  $\Pi_{\sigma}$  is the non commutative Zak transform  $Z_{\sigma}: L^2(X,\mu) \to L^2(C,L^2(\mathcal{R}))$  (isometric isomorphism) given by

$$Z_{\sigma}[f](x) = \sum_{\gamma \in \Gamma} (\Pi_{\sigma}(\gamma)f)(x)\rho(\gamma), \quad x \in C.$$

ullet Therefore, the representation  $\Pi_{\sigma}$  is dual integrable and

$$[f,g]_{\Pi_{\sigma}} = \int_{\mathcal{C}} (Z_{\sigma}[g])(x)^* (Z_{\sigma}[f])(x) d\mu(x).$$

## **∏-invariant spaces**

Let  $\Pi:\Gamma\longrightarrow \mathcal{U}(\mathbb{H})$  be a unitary representation of a countable discrete group  $\Gamma$  on the separable Hilbert space  $\mathbb{H}$ .

- A closed subspace V of  $\mathbb H$  is  $\Pi$ -invariant if  $\Pi(\gamma)(V) \subset V$  for all  $\gamma \in \Gamma$ .
- If A is a subset of  $\mathbb{H}$ , the  $\Pi$ -invariant space generated by A is

$$\langle \mathcal{A} \rangle_{\Pi} := \overline{\operatorname{span} \left\{ \Pi(\gamma) f : f \in \mathcal{A}, \gamma \in \Gamma \right\}^{\mathbb{H}}}.$$

- Every  $\Pi$ -invariant space  $V \subset \mathbb{H}$  is of the form  $V = \langle \mathcal{A} \rangle_{\Pi}$  for some countable set  $\mathcal{A} \subset \mathbb{H}$ .
- When  $\mathcal{A} = \{f\}$  we write  $\langle \mathcal{A} \rangle_{\Pi} = \langle f \rangle_{\Pi}$  and the space is called principal.

**Proposition 1.** For every Π-invariant spaces  $V \subset \mathbb{H}$ , there exist a countable set  $\mathcal{A} = \{f_i\}_{i \in I}$  such that  $\langle f_i \rangle_\Pi \perp \langle f_j \rangle_\Pi$  for  $i \neq j$  and

$$V=\bigoplus_{i\in I}\langle f_i\rangle_{\Pi}.$$



#### Results with the bracket

Let  $\Pi: \Gamma \longrightarrow \mathcal{U}(\mathbb{H})$  be a dual integrable representation of a countable discrete group  $(\Gamma, +)$  on the separable Hilbert space  $\mathbb{H}$  with Helson map  $\mathcal{H}$ .

• 
$$\langle f \rangle_{\Pi} \perp \langle g \rangle_{\Pi} \Leftrightarrow [f,g] = 0$$

**Proposition 2.** Let  $f \in \mathbb{H}$ . The map

$$S_f(\sum_{\gamma\in\Gamma}a(\gamma)\Pi(\gamma)f)=s_{[f,f]}\sum_{\gamma\in\Gamma}a(\gamma)\rho(\gamma)^*$$

defined on span  $\{\Pi(\gamma)f: \gamma \in \Gamma\}$  is well defined and can be extended to a linear surjective isometry  $S_f: \langle f \rangle_{\Pi} \to L^2(\mathcal{R}(\Gamma), [f, f]_{\Pi})$  satisfying

$$S_f(\Pi(\gamma)g) = S_f(g)\rho(\gamma)^*$$
.

**Proposition 3.** Let  $f \in \mathbb{H}$ .  $g \in \langle f \rangle_{\Pi}$  if and only if there exists  $G \in L^2(\mathcal{R}(\Gamma), [f, f]_{\Pi})$  such that  $\mathcal{H}[g] = \mathcal{H}[f]G$ . In this case

$$[f,g]_{\Pi}=[f,f]_{\Pi}G.$$



## Reproducing properties of orbits

The **orbit** generated by  $\mathcal{A} = \{\phi_i\}_{i \in I} \subset \mathbb{H}$  is

$$\mathcal{O}_{\Pi}(\mathcal{A}) = \{\Pi(\gamma)\phi_i : i \in I, \gamma \in \Gamma\}.$$

•  $\mathcal{O}_{\Pi}(\mathcal{A})$  is an orthonormal basis for  $\langle \mathcal{A} \rangle_{\Pi} \Longleftrightarrow [\phi_i, \phi_j] = \delta_{i,j} \mathbb{I}_{\ell^2(\Gamma)}$ .

#### Theorem 4. TFAE:

- (a)  $\mathcal{O}_{\Pi}(A)$  is a frame for  $\langle A \rangle_{\Pi}$  with frame bounds  $0 < A \leqslant B < \infty$ .
- **(b)**  $A[f,f]_{\Pi} \leqslant \sum_{i \in I} |[f,\phi_i]_{\Pi}|^2 \leqslant B[f,f]_{\Pi}$  for all  $f \in \langle \mathcal{A} \rangle_{\Pi}$ .

#### **Proposition 5.** Let $\phi \in \mathbb{H}$ . TFAE:

- (a)  $\mathcal{O}_{\Pi}(\phi)$  is a frame for  $\langle \phi \rangle_{\Pi}$  with frame bounds  $0 < A \leq B < \infty$ .
- **(b)**  $As_{[\phi,\phi]_{\Pi}} \leqslant [\phi,\phi]_{\Pi} \leqslant Bs_{[\phi,\phi]_{\Pi}}.$

Recall:  $s_{[\phi,\phi]_{\Pi}} = \mathbb{P}_{(\ker([\phi,\phi]_{\Pi})^{\perp}}.$ 



#### Parseval frame of orbits

**Theorem 6.** Let  $V \subset \mathbb{H}$  be a  $\Pi$ -invariant space. There exists a countable set  $\mathcal{A}$  such that  $\mathcal{O}_{\Pi}(\mathcal{A})$  is a Parseval frame for V.

#### **Proof**

- (1) By Proposition 1 there exist a countable set  $\mathcal{A} = \{f_i\}_{i \in I}$  such that  $V = \bigoplus_{i \in I} \langle f_i \rangle_{\Pi}$ . (orthogonal)
- (2) For each  $i \in I$ , let  $F_i := s_{[f_i,f_i]_{\Pi}}[f_i,f_i]_{\Pi}^{-1/2} \in L^2(\mathcal{R}(\Gamma),[f_i,f_i]_{\Pi})$ . By Proposition 2 there exists  $\phi_i \in \mathbb{H}$  such that  $\mathcal{H}[\phi_i](x) = \mathcal{H}[f_i](x)F_i$ .
- (3) Proposition 3 proves that  $\langle \phi_i \rangle_{\Pi} = \langle f_i \rangle_{\Pi}$ .
- (4) By Proposition 5 and (2),  $\mathcal{O}_{\Pi}(\phi_i)$  is a Parseval frame for  $\langle f_i \rangle_{\Pi}$ :

$$[\phi_i,\phi_i]_{\Pi} = \int_M \mathcal{H}[\phi_i](x)^* \mathcal{H}[\phi_i](x) dx = F_i[f_i,f_i]_{\Pi} F_i = s_{[f_i,f_i]_{\Pi}}.$$

• The resut follows from (1) and (4).

#### **Co-authors**



H. Sikic U. Zagreb



G. Weiss Wash. U-St.Louis



E. Wison Wash. U-St. Louis



D. Barbieri UAM



J. Parcet ICMAT



V. Paternostro U. Buenos Aires