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The Bracket

For f,g € L?(RY),

= ) flx+kgx+k), xeR
kezZd

o [f,fl(x)>0a. e xeRYand [f,f]=0<= f=0.
@ [-,-] is a sesquilinear hermitian symmetric map.
o [f

,g] is Z9-periodic and

f 1, &1()|dx < [l[glo
[0,1)¢

The bracket defines and L1([0,1)9)-valued inner product in the Hilbert
space L2(RY).

o Jia, Michelli (1991); de Boor, DeVore, Ron (1994).
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Results with the bracket

o With Tyg(x) = g(x + k)

~

f(w)me—Zﬁikwdw _ J [?, /g\_] (w)e_QWik,wdw .
[0,1)4
(1)

Denote by {f);q4 := span{Tyf : k € Z9} the shift-invariant space generated
by f e L2(RY),

0 (Fya L {ghya « [f,8](w) = 0 ae. we[0,1)7.

(f, Tkg)2 = J

Rd

For f € L2(RY) denote by My the space of all m: RY — C that are
Z9-periodic and

o 1/2
Imlla, = (f[o e |m(w)|?[f, f](w)dw) < 0.
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Results with the bracket

o Let f € L2(RY). The map Jr defined by Jr(m) = (m?)v is an
isometric isomorphism from My onto {f ).

o Corollary: g € {f)zq if and only if there exists m € My such that
g = mf.

o Denote by P, , the orthogonal projection of L2(R9) onto {f)ya.
Then,
!

[

[—

a’f\- -z
??] 1{[?,?]>0}f‘

Q)

(Pery, 4 (8)) =

)
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Reproducing properties of O(f) = {T,f : k € Z9}

@ (a) O(f) is an orthonormal basis for {f )4 < [f ]
is a Riesz basis for {f)za with bounds 0 < A< B < @
<~ A<|[f,f]<Bae
@ (c) O(f) is a frame for (f)za with bounds 0 < A< B < o
— Al{[ ] o) S [f f] Bl{[?ﬂﬂ)} a.e.

(a) appears in a paper of R. P. Gosselin (1963) dedicated to the study of

cardinal series.
Earliest reference to (c) is due to J. Benedetto and S. Li (1993/1998).
This result follows from the representation of the Frame operator of O(f),

= 2<g7 ka>ka7 g€<f>Zd7
kezd

in terms of the bracket: F¢(g)" = [f, ]2
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Other results for O(f) = {T,f : k € Z9}

e (a) O(f) has a biorthogonal system of the form O(f) with 7 € (f),q
— ——— e [1([0,1)7). In this case f = ——F.
[f.f] [f,f]
e (b) (d=1) O(f) is £?-linearly independent in L2(R)(*) <= [f,f] >0
a.e.
e (c) (d=1) O(f) is a Schauder basis for (f); < [f,f] is a
Muckenhoupt A weight in [0,1).

(*) A sequence (x,)%; in a Hilbert space H is ¢-linearly independent if

whenever (c,)%_; € £?(N) and IimOO | Z cnXn| = 0, then ¢, = 0 for all
k=1
neN.
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Group von Neumann algebras

Let ' be a discrete countable group.

@ The right regular representation of I"is p : [ — U(¢?(I')) given by
(p(7)a)(71) = a(717) or equivalently p(7)dy, = 6,41
@ The right von Neumann algebra of I is

R(T) = span {p(y) iy el} O

@ The trace of F € R(I') is given by 7(F) = (Fde,de)e(r)-

@ For 1 < p<ao,and FeR(), let |F|,:= (7(|F|P))YP, where
|F| = VF*F.

The left regular representatlon of Mis A\: T — U2 )) given by
(A(7)a)(m) = a(y"ty1) or equivalently A()d, = 6y
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Non commutative Lebesgue spaces

@ Non commutative Lebesgue spaces over 1 For 1 < p < o0,

LP(R(T)) := span {p(7) v €T} ".

and L®(R(T)) := R(T) with the operator norm.

@ The trace can be defined for any element of LP(R(I)), 1
and

N

p<ow

L®(R(T)) < LP(R(I)) = LY(R(T))-
e [2(R(I)) is a Hilbert space with

(F1, F2)2 = T(F; F1)

and {p() : v € ['} is an orthonormal basis of L?(R(I)).
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Plancherel Theorem

@ For F e L1(R(I)) its Fourier coefficients are defined by

F(y) =7(Fp(7)), veT.

@ For ae (2(I) its Fourier series is defined by
Fr(a) = Y. a(v)p(7)*.
~yel

Plancherel Theorem:
(a) For F e L2(R(T)), F := (F(7))ser € 2(T) and |F[2 = | Fleqr)

(b) For a = (a(7))~er € £2(T), the series Z * converges in the

~el
£2(R(F)) norm to an operator F := Fr(a) € L?>(R(T")) such that

F(v) = a(v) and
| Fr(a)]2 = llall2(ry.-
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The support of a selfadjoint operator

@ For F e L1(R(I)) selfadjoint, the support of F is the minimal
orthogonal projection sg of ¢2(I") such that

FZSFFZFSF.

@ It holds that sf € R(I') and

SF = ]P(ker(F))J- = ]P)W(F)
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Dual integrable representations

Let M : T — U(H) be a unitary representation of countable discrete
group I on the Hilbert space H.

@ Definition. The unitary representation I1 is said to be dual
integrable if there exists a function, called bracket,
[-,-]n: H x H — LY(R(T)) such that

(F,N(y)gym = 7([f, glnp(v)), f,geH,yel. (2)

@ The bracket of a dual integrable representation is sesquilinear map
that satisfies

° (I) [fag]itl = [g’ f]l'l
o (I [f,N(v)gln = p(v)[f, gln and [MN(7)f,gln = [f, glnp()*
o (1) [f, f]n is nonnegative, and ||[f, f]nll1 = HfH]%I
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Equivalent conditions

The following conditions are equivalent for a unitary representation I1 of a
discrete countable group I on a Hilbert space H:

@ [1is dual integrable
@ [1is unitary equivalent to a subrepresentation of a direct sum of
countable many copies of the right regular representation.

o [1is square integrable, that is, there exists a dense subspace D ¢ H

such that for each f € D, Z (g, M(7)f)? < o for all g € H.
~yel

@ [1 admits a Helson map, that is, there exists a o-finite measure space
(M,v) and a linear isometry H : H — L?(M, L2(R(T))) such that

H[N(7)F](x) = H[F](x)p(7)*, xeM,vel, feH.
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Example of Helson maps

o If H is a Helson map for a dual integrable representation [1, the
bracket is given by

[f. gln — jM%[gkx)*H[f](x)du(x), fg el

@ Example 1: A Helson map for the left regular representation
(A(7)a)(71) = a(y1y1) is the group Fourier series
Fr : 02(T) — [2(R(IN)) since it is a linear (surjective) isometry that
satisfies
Fr(\(1)a) = Fr(a)p()*.

Therefore.

[a, b]x = (Fr(b))*Fr(a), a,be ().
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Example 2: The Gabor representation (abelian)

e The Gabor representation G : Z9 x Z9 — U(L%(RY)) is given by
Gk, O)f(x) = TeMof(x)) = ™™ f(x + k), xeRC.

@ A Helson map for G is the Zak transform
Z : L2(RY) — L2([0,1)9 x [0,1)9) given by

Zf (x,w) := Z f(x + £)e2mitw
lezd

@ Therefore G is dual integrable and

[fag]g = Tg - Zf, on [07 1)d X [07 1)d
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Group actions on L2(X, 1)

@ 0: [ x X — X is an action if the map x — 0(x) := o(7,x) is
p-measurable, o(e, x) = x for all x € X, and

J(’Ylap(72ax)) = 0-(71727)()7 1,72 € ra x € X.

@ The action o is regular if for each v € [ the measure
p(E) = p(oy(E)), E < X, is absolutely continuous with respect to
with positive Radon-Nikodym derivative J, : [ x X — R" so that

dja(0(x)) = Jo (3, X)dpa(x)

@ The action o has the tiling property if there exists a y-measurable set
C < X such that {0,,(C)}er is a pu-almost disjoint covering of X.
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@ My : T — U(L?(X)) given by
(Mo (M) (x) = do (7, x) 2 F (o (v, %))

is a unitary representation of I in L2(X).

@ A Helson map for the representation [, is the non commutative Zak
transform Z, : L2(X, ) — L2(C, L?(R)) (isometric isomorphism)

given by
Z[f1(x) = X, (M(mF)(x)p(y), xeC.

yel

@ Therefore, the representation I, is dual integrable and

IF.gln, = f (Zo &) () (Zo[F) (x)dulx) -

C
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[N-invariant spaces

Let M: T — U(H) be a unitary representation of a countable discrete
group I on the separable Hilbert space H.
@ A closed subspace V of H is lN-invariant if M(y)(V) < V forall yeT.
o If Ais a subset of H, the lM-invariant space generated by A is

{Ayn :=span {M(y)f : fe A,ve F}H.

@ Every M-invariant space V < H is of the form V = (A)n for some
countable set A < H.
© When A = {f} we write {(A)n = {f)n and the space is called
principal.
Proposition 1. For every [N-invariant spaces V c H, there exist a
countable set A = {fi}ic; such that {fi)n L {fj)n for i # j and
V = D{fon.
iel
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Results with the bracket

Let M: T — U(H) be a dual integrable representation of a countable
discrete group (I, +) on the separable Hilbert space H with Helson map .

o (finLigmn<=|[fg]=0
Proposition 2. Let f € H. The map

Se(Y, aMNMF) = si. Y, a(v)p(n)*

vyel vyel

defined on span {[1(v)f : v € '} is well defined and can be extended to a
linear surjective isometry S¢ : (fyn — L2(R(T),[f, f]n) satifying

Se(N(7)g) = Se(g)p(n)*.

Proposition 3. Let f e H. g € (f)n if and only if there exists
G e L2(R(T),[f, f]n) such that H[g] = H[f]G. In this case

[f,gln = [f,f]nG.
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Reproducing properties of orbits

The orbit generated by A = {¢;}ic) c H is
On(A) ={N(y)p;:iel,yerl}.

@ On(A) is an orthonormal basis for (A)n <= [¢i, ¢;] = 0 jle(r).

Theorem 4. TFAE:
(a) On(A) is a frame for {(A)n with frame bounds 0 < A < B < 0.

(b) A[f, fln < D I[F, ¢ilnl* < B[f, f]n for all f € (A)n.

iel

Proposition 5. Let ¢ € H. TFAE:

(a) On(¢) is a frame for (¢)n with frame bounds 0 < A < B < o0.
(b) Asy 41 < [#, ¢In < Bsg.¢]n-

Recall: sig 410 = P(ker([¢.6]n)*-
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Parseval frame of orbits

Theorem 6. Let V < H be a lN-invariant space. There exists a countable

set A such that Op(A) is a Parseval frame for V.
Proof

@ (1) By Proposition 1 there exist a countable set A = {f};e; such that
V = @{f)n. (orthogonal)

iel

o (2) For each i € I, let F; := i g, [fis filn > € LA(R(T), [, filn). By
Proposition 2 there exists ¢; € H such that H[¢;](x) = H[f](x)F;
@ (3) Proposition 3 proves that (p;>n = {fi)n.

o (4) By Proposition 5 and (2), On(¢;) is a Parseval frame for (fi)n :
(91000 = || 161007 HIO1(0 = FlF. FInF = st
@ The resut follows from (1) and (4).
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