Computing SIC-POVMs using Permutation Symmetries and Stark Units

Markus Grassl

International Centre for Theory of Quantum Technologies
University of Gdansk

markus.grassl@ug.edu.pl
sicpovm.markus-grassl.de

26 October 2021

in collaboration with
Marcus Appleby, Ingemar Bengtsson, Michael Harrison, Gary McConnell

additional support by the Max Planck Institute for the Science of Light, Erlangen, and MPG
Overview

• Zauner’s conjecture
• numerical search
• symmetries & Fibonacci-Lucas SIC-POVMs
• exact solutions from numerical solutions
 – using overlaps
 – using permutations
• numerical and exact solutions from Stark units
• conclusions & outlook
A Simple to State Problem

Are there \(d^2\) vectors \(v_1, v_2, \ldots, v_{d^2} \in \mathbb{C}^d\) in the complex vector space of dimension \(d\) such that:

(i) \[\langle v_j | v_j \rangle = 1 \quad \text{for} \quad j = 1, \ldots, d^2\]

(ii) \[|\langle v_j | v_k \rangle|^2 = \frac{1}{d + 1} \quad \text{for} \quad 1 \leq j < k \leq d^2\]

The vectors \(v_j\) form an equiangular tight frame/finite unit norm tight frame.
A Simple to State Problem

Are there d^2 vectors $v_1, v_2, \ldots, v_{d^2} \in \mathbb{C}^d$ in the complex vector space of dimension d such that:

(i) \(\langle v_j | v_j \rangle = 1 \) for $j = 1, \ldots, d^2$

(ii) \(|\langle v_j | v_k \rangle|^2 = \frac{1}{d+1} \) for $1 \leq j < k \leq d^2$

The vectors v_j form an equiangular tight frame/finite unit norm tight frame.

All solutions form a real algebraic variety, using $2d$ real variables per vector

\[v_j = (a_{j,1} + ib_{j,1}, a_{j,2} + ib_{j,2}, \ldots, a_{j,d} + ib_{j,d})^T \quad (i = \sqrt{-1}) \]

$2d^3$ variables, d^2 equations (i) of degree 2 and \(\binom{d^2}{2} \) equations (ii) of degree 4.
Weyl-Heisenberg Group

- generators: \(H_d := \langle X, Z \rangle \)

where \(X := \sum_{j=0}^{d-1} |j + 1 \rangle \langle j | \) and \(Z := \sum_{j=0}^{d-1} \omega_d^j |j \rangle \langle j | \)

\((\omega_d := \exp(2\pi i / d)) \)

- relations:

\[
(\omega_d^c X^a Z^b) (\omega_d^{c'} X^{a'} Z^{b'}) = \omega_d^{a' - b'} (\omega_d^{c'} X^{a'} Z^{b'}) (\omega_d^c X^a Z^b)
\]

- basis:

\[
H_d / \zeta(H_d) = \{ X^a Z^b : a, b \in \{0, \ldots, d - 1\} \} \cong \mathbb{Z}_d \times \mathbb{Z}_d
\]

trace-orthogonal basis of all \(d \times d \) matrices
Constructing SIC-POVMs

Ansatz:
SIC-POVM that is the orbit under the Weyl-Heisenberg group H_d, i.e.,

$$|v^{(a,b)}\rangle := X^a Z^b |v^{(0,0)}\rangle$$

$$|\langle v^{(a,b)} | v^{(a',b')}\rangle|^2 = \begin{cases}
1 & \text{for } (a, b) = (a', b'), \\
1/(d+1) & \text{for } (a, b) \neq (a', b')
\end{cases}$$

$$|v^{(0,0)}\rangle = \sum_{j=0}^{d-1} (x_{2j} + ix_{2j+1}) |j\rangle,$$

(x_0, \ldots, x_{2d-1} are real variables, $x_1 = 0$)

\implies we have to find only one fiducial vector $|v^{(0,0)}\rangle$ instead of d^2 vectors

\implies polynomial equations with $2d - 1$ variables, but already quite complicated for $d = 6$
Jacobi Group (or Clifford Group)

• automorphism group of the Weyl-Heisenberg group H_d, i.e.

$$\forall T \in J_d : T^\dagger H_d T = H_d$$

• the action of J_d on H_d modulo phases corresponds to the symplectic group $SL(2, \mathbb{Z}_d)$, i.e.

$$T^\dagger X^a Z^b T = \omega_d^c X^{a'} Z^{b'} \quad \text{where} \quad \begin{pmatrix} a' \\ b' \end{pmatrix} = \tilde{T} \begin{pmatrix} a \\ b \end{pmatrix}, \tilde{T} \in SL(2, \mathbb{Z}_d)$$

\implies homomorphism $J_d \to SL(2, \mathbb{Z}_d)$

• additionally: complex conjugation (anti-unitary)

$$X^a Z^b \mapsto X^a Z^{-b} \quad \text{corresponding to} \quad \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
Zauner’s Conjecture

[G. Zauner, Dissertation, Universität Wien, 1999]

Conjecture:
For every dimension $d \geq 2$ there exists a SIC-POVM whose elements are the orbit of a rank-one operator E_0 under the Weyl-Heisenberg group H_d. What is more, E_0 commutes with an element S of the Jacobi group J_d. The action of S on H_d modulo the center has order three.

support for this conjecture (to date):

- numerical solutions for all dimensions $d \leq 193$, plus a few more
- exact algebraic solutions for some dimensions (see below)

one of the prize problems in

Numerical Search for SIC-POVMs

• “second frame potential” for 2-designs

\[
\sum_{i,j=1}^{d^2} |\langle v(i) \otimes v(i) | v(j) \otimes v(j) \rangle|^2 = \sum_{i,j=1}^{d^2} |\langle v(i) | v(j) \rangle|^4 = d^2 \sum_{a,b=1}^{d} |\langle \psi | X^a Z^b | \psi \rangle|^4
\]

• for any state \(|\psi \rangle \in \mathbb{C}^d \)

\[
f(|\psi \rangle) = \sum_{j,k=1}^{d} \left| \sum_{\ell=1}^{d} \langle \psi | j + \ell \rangle \langle \ell | \psi \rangle \langle \psi | k + \ell \rangle \langle j + k + \ell | \psi \rangle \right|^2
\]

\[
= \sum_{j,k=1}^{d} \left| \sum_{\ell=1}^{d} \overline{\psi}_{j+\ell} \psi_{\ell} \overline{\psi}_{k+\ell} \overline{\psi}_{j+k+\ell} \right|^2 \geq \frac{2}{d+1}
\]

with equality iff \(|\psi \rangle \) is a fiducial vector for a Weyl-Heisenberg SIC-POVM

• gradient descent to minimize \(f(|\psi \rangle) \), subject to unit norm
Computing SIC-POVMs using Permutation Symmetries and Stark Units

Numerical Search for SIC-POVMs

- for any state $|\psi\rangle \in \mathbb{C}^d$

$$f(|\psi\rangle) = \sum_{j,k=1}^{d} \left| \sum_{\ell=1}^{d} \bar{\psi}_j + \ell \psi_{\ell} \bar{\psi}_{k+\ell} \psi_{j+k+\ell} \right|^2 \geq \frac{2}{d+1}$$

with equality iff $|\psi\rangle$ is a fiducial vector for a Weyl-Heisenberg SIC-POVM

- gradient descent to minimize $f(|\psi\rangle)$, subject to unit norm

- use $F(\vec{x}) = f \left(\frac{P\vec{x}}{\|P\vec{x}\|} \right)$ for an arbitrary vector $\vec{x} \in \mathbb{C}^d$, where P is the projection onto a subspace (prescribed symmetry)

- chain rule yields a relatively simple formula for the gradient of $F(\vec{x})$ in terms of the gradient of f

- complexity $\mathcal{O}(d^3)$ for both the function and the gradient when storing $\mathcal{O}(d^2)$ intermediate values
Numerical Search for SIC-POVMs

- efficient implementation of $F(\vec{x})$ and its gradient in C++ by Andrew Scott
- parallel computation of the function/gradient using OpenMP/CUDA
- minimization using limited-memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
- search runs into local minima, we need many random initial points
- running many instances on HPC clusters by MPG and GWDG
 - for $d = 189$: approx. 23.3×10^6 trials, 3.48 CPU years
 - for $d = 190$: approx. 66.8×10^6 trials, 10.51 CPU years
 - for $d = 193$: approx. 78.3×10^6 trials, 13.00 CPU years
 - for $d = 5779$: 55065 trials, 17.69 GPU years, no success
Average Number of Iterations

average number of iterations (100 solutions)

- avg. no sym
 - 1.22^{**x}
- avg. Zauner
 - 1.09^{**x}
Average Number of Iterations with Zauner Symmetry

number of iterations with Zauner symmetry (100 solutions)
Fibonacci-Lucas SIC-POVMs

- (exact) symmetry analysis of a numerical solution for $d = 124$
 \[\implies\text{symmetry group of order } 30\text{ (prescribed order } 6)\]

- identified as part of a series of dimensions (related to Lucas numbers)
 \[d = 4, 8, 19, 48, 124, 323, 844, 2208, 5779, 15128, 39604, \ldots\]

- symmetry group of order $6k$ related to Fibonacci numbers, \[F = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}\]

- new exact solutions for $d = 124$ and $d = 323$ (previously $d = 48$)
 (found using the symmetries and via Gröbner bases)

- new numerical solutions for $d = 844$ and $d = 2208$ (previously $d = 323$)

- generalisations related to generalised Fibonacci/Lucas numbers, using
 \[A_m = \begin{pmatrix} 0 & 1 \\ 1 & m \end{pmatrix}\]
Symmetries of SIC-POVMs

- additional symmetry
- dimension

- estimate
- anti-unitary
- unitary

Plot showing the symmetries of SIC-POVMs with various dimensions and additional symmetries.
Ray Class Field Conjecture

CodEx talks by M. Appleby, S. Flammia, G. Kopp

Ray class field conjecture

let \(\mathbb{E} \) be the field containing all rank-one projection operators of a SIC-POVM

\[
\mathbb{Q} \triangleleft \mathbb{K} = \mathbb{Q}(\sqrt{D}) \triangleleft \mathbb{E}_0 \triangleleft \mathbb{E}_1 \triangleleft \mathbb{E}
\]

for the minimal field:

- \(\mathbb{E} \) is the ray class field over \(\mathbb{Q}(\sqrt{D}) \) with conductor \(a \) \(d' \) with ramification at both infinite places, \(D \) is the squarefree part of \((d + 1)(d - 3) \)
- \(\mathbb{E}_1 \) contains the overlap phases and equals the ray class field with ramification only allowed at the infinite place taking \(\sqrt{D} \) to a positive real number
- \(\mathbb{E}_0 \) is the Hilbert class field \(H_\mathbb{K} \), in particular \(h = [\mathbb{E}_0 : \mathbb{K}] \) equals the class number of \(\mathbb{K} \)

\[^a \text{d' = d, or d'} = 2d \text{ for d even} \]
Ray Class Field Conjecture

CodEx talks by M. Appleby, S. Flammia, G. Kopp

Ray class field conjecture

let \mathbb{E} be the field containing all rank-one projection operators of a SIC-POVM

$$\mathbb{Q} \triangleleft K = \mathbb{Q}(\sqrt{D}) \triangleleft \mathbb{E}_0 \triangleleft \mathbb{E}_1 \triangleleft \mathbb{E}$$

- **“Fact 8”**: $\text{Gal}(\mathbb{E}_1/\mathbb{E}_0)$ permutes the overlaps.
 For each $\sigma \in \text{Gal}(\mathbb{E}_1/\mathbb{E}_0)$ there is a matrix $G_\sigma \in \text{GL}(2, \mathbb{Z}/d'\mathbb{Z})$ such that
 $\sigma(\langle \psi | D_p | \psi \rangle) = \langle \psi | D G_\sigma p | \psi \rangle$.

 G_σ commutes with matrices F related to symmetries U_F of the fiducial vector $|\psi\rangle$.

\[^a D_p = D_{a,b} = (e^{i\pi \over d})^{ab} X^a Z^b \]
Exact Solutions from Numerical Solutions

- matrix group $\mathcal{M} = \{ G_\sigma : \sigma \in \text{Gal}(E_1/E_0) \}$, commutes with the symmetry
- projection operator $\Pi = |\psi\rangle\langle\psi|$

“Fact 8:” $\sigma(\text{Tr}(\Pi D_p)) = \text{Tr}(\Pi D_{G_\sigma p})$

- expansion coefficients $c_p = \text{Tr}(\Pi D_p)$ in the same orbit under \mathcal{M} are related by Galois conjugation
- the coefficients of the polynomial $f_{p_0}(z) = \prod_{p\in p_0^\mathcal{M}} (z - c_p)$

lie in a number field of “small” degree
- find the exact minimal polynomials of those coefficients
 (requires high-precision numerical solution)
- find the roots of the exact polynomials $f_{p_0}(z)$ in the ray class field
- compute Π from the d^2 expansion coefficients c_p
- exact solutions for some $d \leq 48$ ($d \leq 100$ work in progress)
More Exact Solutions from Numerical Solutions

[Markus Grassl, Exact SIC-POVMs from permutation symmetries, in preparation]

- when G_{σ} has determinant 1, there exists a unitary $U_{G_{\sigma}} := T_{\sigma}$ with

$$\sigma(\text{Tr}(\Pi D_p)) = \text{Tr}(\Pi D_{G_{\sigma}p}) = \text{Tr}(\Pi T_{\sigma} D_p T_{\sigma}^\dagger) = \text{Tr}(T_{\sigma}^\dagger \Pi T_{\sigma} D_p)$$

\implies action of T_{σ}^\dagger on the projection Π and on the state $|\psi\rangle$

- when $G_{\sigma} = \left(\begin{array}{cc} \alpha & 0 \\ 0 & \alpha^{-1} \end{array}\right)$ is additionally diagonal, then T_{σ} is a permutation matrix

- moreover, assume that $\sigma(D_p) = D_p$; then

$$\sigma(\Pi) = T_{\sigma}^\dagger \Pi T_{\sigma}$$

and hence

$$\sigma(\Pi_{j,k}) = \Pi_{\alpha j,\alpha k}$$

where the indices are computed modulo d
More Exact Solutions from Numerical Solutions

- for the first column of Π we have
 \[
 \sigma(\Pi_{j,0}) = \Pi_{\alpha j,0} \quad \text{for } j = 0, \ldots, d - 1
 \]

- we can take the first column as (unnormalised) fiducial vector v, unless it is zero (which was observed for $d = 26, 28, 62, 98, 228$)
 \[\Rightarrow \sigma \text{ permutes the components of the fiducial vector, stabilising the first coordinate}\]

- when the first column is zero, consider a non-zero column k:
 \[
 \sigma(\Pi_{j,k}) = \Pi_{\alpha j,\alpha k} = \gamma \Pi_{\alpha j,k} \quad \text{for } j = 0, \ldots, d - 1
 \]
 \[\Rightarrow \sigma \text{ gives rise to a projective permutation action}\]
 \[\Rightarrow \text{consider the action on ratios } v_j/v_j'\]

\[\text{(*) } \Pi \text{ has rank one, so column } \alpha k \text{ is proportional to column } k, \text{i.e., } \Pi_{j,\alpha k} = \gamma \Pi_{j,k}\]
More Exact Solutions from Numerical Solutions

outline of the procedure:

- compute a numerical fiducial vector with prescribed symmetry S
- determine the diagonal matrices $G_\sigma \in \text{SL}(2, \mathbb{Z}/d'\mathbb{Z})$ in the centraliser of S
- the diagonal matrices correspond to a subgroup $H \leq (\mathbb{Z}/d'\mathbb{Z})^\times$
- consider the rescaled fiducial vector a^v with $v_0 = 1$
- the coefficients of the polynomial $f_j(z) = \prod_{\alpha \in H} (z - v_{\alpha j})$ lie in a number field of “small” degree, fixed by (a subgroup of) the Galois group
- similar as before, find the exact coefficients of $f_j(z)$ from a high-precision numerical solution, and then compute its exact roots
 \[\Rightarrow \text{only } \mathcal{O}(d) \text{ numbers in a field of smaller degree} \]

\(^a\text{assumption } v_0 \neq 0 \text{ for simplicity here}\)
More Exact Solutions from Numerical Solutions

- the **assumption** that $\sigma(D_p) = D_p$ appears to be true
- new exact solutions for 57 additional dimensions (so far)

 $d = 26, 38, 42, 49, 52, 57, 61, 62, 63, 65, 67, 73, 74, 78, 79, 84, 86, 91, 93, 95,$

 $97, 98, 103, 109, 111, 122, 127, 129, 133, 134, 139, 143, 146, 147,$

 $151, 155, 157, 163, 168, 169, 172, 181, 182, 183, 193, 199,$

 $201, 228, 259, 292, 327, 364, 399, 403, 489, 844, 1299$

- fiducial vectors lie in a proper (“small”) subfield of the ray class field from before, that intersects with the cyclotomic field $\mathbb{Q}(\zeta_{d'})$ trivially or in a smaller cyclotomic field
- “small ray class field conjecture”:
 The minimal field containing a (suitably rescaled) fiducial vector is a ray class field whose conductor is a particular factor of the ideal $d\mathcal{O}_K$ with ramification at one of the infinite places.
Prime Dimensions $p \equiv 1 \mod 3$

- for prime dimensions $d = p \equiv 1 \mod 3$, the Zauner symmetry F_z is conjugate to a diagonal matrix \tilde{F}_z
- the centraliser of \tilde{F}_z contains all diagonal matrices in $SL(2, \mathbb{Z}/d\mathbb{Z})$
- the components v_j, $j = 1, \ldots, d - 1$, of the fiducial vector (with $v_0 = 1$) are on a single orbit with respect to the Galois group, i.e.,
 \[v_{\theta k} = \sigma^k(v_1) \]
 for generators θ and σ of $(\mathbb{Z}/d\mathbb{Z})^\times$ and the Galois group, resp.
- for a permutation symmetry of order 3ℓ, we need only $m = \frac{d-1}{3\ell}$ numbers

dream:
find a direct way to determine the algebraic number v_1, as well as σ and θ
Prime Dimensions \(p = n^2 + 3 \)

[Appleby, Bengtsson, Grassl, Harrison, McConnell, “SIC-POVMs from Stark Units”]

Conjecture:

- for prime dimensions \(p = n^2 + 3 \) \((n > 0)\), there is an almost flat fiducial vector \(v \) with

\[
v_j = \begin{cases}
-2 - \sqrt{d+1} & j = 0 \\
\sqrt{v_0 e^{i\vartheta_j}} & j > 0
\end{cases}
\]

- the components of \(v \) generate a “small” ray class field \(K^m \) with finite modulus \(\sqrt{d+1} \pm 1 \) and ramification at one infinite place

- the phases \(e^{i\vartheta_j} \) are Galois conjugates of (real) Stark units for the ray class field \(K^m \)
Application of Stark’s Conjectures

• for certain ray class fields \mathbb{K}^m over the real quadratic field $\mathbb{K} = \mathbb{Q}(\sqrt{D})$, $D > 0$, one can compute numerical approximations of Stark units ϵ_σ via special values of derivatives of L-functions

• the Stark units are labelled by elements σ of the Galois group $\text{Gal}(\mathbb{K}^m/\mathbb{K})$ such that $\epsilon_\sigma = \sigma(\epsilon_0)$

• from numerical Stark units with sufficiently high precision, we can deduce their exact minimal polynomial over \mathbb{K}

• we have a heuristic that allows us to deduce the required precision from numerical Stark units with low precision

• the complexity of the calculation appears to be roughly $O(\text{deg}(\mathbb{K}^m/\mathbb{K}) \times (\#\text{digits})^{3.3})$
Runtime L-Functions

Total CPU time to compute the numerical derivative of L-functions using Magma and PARI/GP (last three cases)

<table>
<thead>
<tr>
<th>d</th>
<th>$\deg(K^m/K)$</th>
<th>\log height</th>
<th>precision</th>
<th>CPU time</th>
</tr>
</thead>
<tbody>
<tr>
<td>487</td>
<td>324</td>
<td>424</td>
<td>1000 digits</td>
<td>251 hours</td>
</tr>
<tr>
<td>787</td>
<td>262</td>
<td>299</td>
<td>1000 digits</td>
<td>118 hours</td>
</tr>
<tr>
<td>2707</td>
<td>902</td>
<td>1861</td>
<td>3800 digits</td>
<td>900 days</td>
</tr>
<tr>
<td>4099</td>
<td>1366</td>
<td>974</td>
<td>2000 digits</td>
<td>170 days</td>
</tr>
<tr>
<td>5779</td>
<td>214</td>
<td>127</td>
<td>300 digits</td>
<td>18 min</td>
</tr>
<tr>
<td>1447</td>
<td>964</td>
<td>2158</td>
<td>4600 digits</td>
<td>111 days</td>
</tr>
<tr>
<td>19603</td>
<td>2178</td>
<td>1754</td>
<td>4000 digits</td>
<td>82 days</td>
</tr>
<tr>
<td>2503</td>
<td>3336</td>
<td>6464</td>
<td>13000 digits</td>
<td>60.5 years</td>
</tr>
</tbody>
</table>

26.10.2021 – 25– Markus Grassl
Computing SIC-POVMs using Permutation Symmetries and Stark Units

Flipping the Sign

- real quadratic field $\mathbb{K} = \mathbb{Q}(\sqrt{D})$ with non-trivial automorphism $\tau: \sqrt{D} \mapsto -\sqrt{D}$

- embedding $j: \mathbb{K} \hookrightarrow \mathbb{R}$, $j(\sqrt{D}) > 0$, $j^\tau(\sqrt{D}) = j((\sqrt{D})^\tau) < 0$
 - “real” Stark units ϵ_σ: $j(\epsilon_\sigma) > 0$
 - “complex” Stark units ϵ_σ^τ: $j(\epsilon_\sigma^\tau) = j^\tau(\epsilon_\sigma) \in \mathbb{C} \setminus \mathbb{R}$

- minimal polynomial of ϵ_σ: $p_1(t) \in \mathbb{K}[t]$
 \implies minimal polynomial of ϵ_σ^τ: $p_2(t) = p_1^\tau(t)$

- obstacle:
 operation of σ on ϵ_0^τ would require factoring $p_2(t)$

for simplicity, we assume in the following class number $h = 1$, i.e., $H_\mathbb{K} = \mathbb{K}$
The Galois Polynomial

- fixing some labelling, we know how σ permutes the m (numerical) Stark units ϵ_j: $\sigma(\epsilon_j) = \sigma_{\pi_{\sigma}(j)}$ for some permutation π_{σ}

- there exists a unique polynomial g_1 of degree at most $m - 1$ such that

$$g_1(\epsilon_j) = \epsilon_{\pi_{\sigma}(j)} \quad \text{for } j = 1, \ldots, m \quad (1)$$

- using Newton interpolation, g_1 can be computed with $O(m^2)$ arithmetic operations ($O(m(\log m)^2)$ when using FFT-based methods)

- the coefficients of g_1 are in K, as (1) is invariant wrt. $\text{Gal}(K^{p_j^\tau}/K)$

- $g_2(t) = g_1^\tau(t)$ corresponds to the action of σ on ϵ_j^τ: $g_2(\epsilon_j^\tau) = \epsilon_{\pi_{\sigma}(j)}^\tau$

- potential computational obstacle:
 we don’t know an a priori bound for the required precision
 (for $d = 19603$, the coefficients have more than 1 million digits)
Solving the Sign Problem

Recall: We conjecture that the components of the fiducial vector are square roots of Galois conjugates of Stark units, i.e., $v_{\theta k} = \sqrt{v_0 \sigma^k(\epsilon_0^\tau)}$.

Problem: there are two square roots $\pm \sqrt{v_0 \sigma^k(\epsilon_0^\tau)}$

Solution:

- it turns out that polynomial $p_2(t^2/v_0)$ with $v_0 = -2 - \sqrt{d + 1}$ factors in $\mathbb{K}[t]$ as
 \[
 v_0^m p_2(t^2/v_0) = p_4(t)p_4(-t)
 \]
- pick the factor $p_4(t)$ and check which of the square roots is a root of $p_4(t)$
- we are left with a global sign ambiguity, i.e., two possibilities
- note: it does not matter which of the Galois conjugates of the Stark units is assigned to ϵ_0^τ; all choices yield eventually fiducial vectors
Final Step: Combinatorial Search

so far, we have

- exact minimal polynomials $p_1(t), p_2(t), p_4(t) \in \mathbb{K}[t]$ and exact Galois polynomials $g_1(t), g_2(t) \in \mathbb{K}[t]$
- numerical square roots $\sqrt{v_0 \epsilon_j}$ (up to a global sign) together with the permutation action of the (cyclic) Galois group $\text{Gal} \left(\mathbb{K}^m / H_\mathbb{K} \right)$ on them

final step:

- we have to identify which primitive element $\theta \in (\mathbb{Z}/d\mathbb{Z})^\times$ corresponds to the action of σ
- we have to fix the global sign (we can choose the sign of the first coordinate)
- compute a (numerical) vector \mathbf{v} for all choices (less than d) and test the overlap $|\langle \mathbf{v} | X | \mathbf{v} \rangle|^2 / ||\mathbf{v}||^4 \approx \frac{1}{d+1}$
- we know that $\sigma^{m/2}$ corresponds to complex conjugation
We can also compute an exact representation of the fiducial vector without explicit factorisation in the extension field:

- define the field $\mathbb{L} = H_K(\gamma)$ with $p_4(\gamma) = 0$
- compute the exact Galois polynomial $g_4(t) \in H_K[t]$ from the numerical values $\sqrt{v_0 e^T}$
- the action of the Galois automorphism σ on \mathbb{L} is defined by $\sigma: \gamma \mapsto g_4(\gamma)$
- we can compute the components of the fiducial vector using

$$v_0 = \pm(2 + \sqrt{d + 1}), \quad v_1 = \gamma, \quad \text{and} \quad v_{\theta j} = g_4(v_j) \text{ for } j > 0$$

computational obstacles: missing an *a priori* bound on the precision to compute the exact Galois polynomial $p_4(t)$ and arithmetic in the field \mathbb{L} is slow when the degree is large (use tower of subfields if possible)
Verification of the Solution

- second frame potential for a fiducial vector

\[
f(|\psi\rangle) = \sum_{j,k=1}^{d} \left| \sum_{\ell=1}^{d} \overline{\psi_{j+\ell}} \psi_{\ell} \overline{\psi_{k+\ell}} \psi_{j+k+\ell} \right|^2 = \frac{2}{d+1}
\]

- \(G(j, k)\) has an eightfold symmetry
- we don’t need \(d\)-th roots of unity
- \(\mathcal{O}(d^3)\) arithmetic operations

verifying the solution takes longer than computing it
Runtime Verification

CPU time for the exact/numerical verification of the solution

<table>
<thead>
<tr>
<th>d</th>
<th>$\deg(K^m/K)$</th>
<th>precision</th>
<th>CPU time</th>
<th>$G(j, k)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>103</td>
<td>$2^2 \times 17$</td>
<td>exact</td>
<td>440 s</td>
<td>1.3 s</td>
</tr>
<tr>
<td>199</td>
<td>2×11</td>
<td>exact</td>
<td>310 s</td>
<td>0.3 s</td>
</tr>
<tr>
<td>487</td>
<td>$2^2 \times 3^4$</td>
<td>exact</td>
<td>31 days</td>
<td>315 s</td>
</tr>
<tr>
<td>787</td>
<td>2×131</td>
<td>10000 digits</td>
<td>3 hours</td>
<td>65 min</td>
</tr>
<tr>
<td>1447</td>
<td>$2^2 \times 241$</td>
<td>10000 digits</td>
<td>17.0 hours</td>
<td></td>
</tr>
<tr>
<td>2707</td>
<td>$2 \times 11 \times 41$</td>
<td>2000 digits</td>
<td>11.2 hours</td>
<td></td>
</tr>
<tr>
<td>4099</td>
<td>2×683</td>
<td>2000 digits</td>
<td>36.5 hours</td>
<td></td>
</tr>
<tr>
<td>5779</td>
<td>2×107</td>
<td>2000 digits</td>
<td>100 hours</td>
<td>88 min</td>
</tr>
<tr>
<td>19603</td>
<td>$2 \times 3^2 \times 11^2$</td>
<td>1000 digits</td>
<td>1367 days</td>
<td></td>
</tr>
<tr>
<td>39604</td>
<td>$2^2 \times 3^2 \times 5^2$</td>
<td>100 digits</td>
<td>684 days</td>
<td>≈ 28 days</td>
</tr>
</tbody>
</table>
Solutions for $d = n^2 + 3$

- the method can be generalised to composite dimensions $d = n^2 + 3$
- even dimensions $d = n^2 + 3$ are divisible by 4, but not by 8; almost flat fiducial vector after change of basis
- for composite dimensions, one has to compute Stark units for certain subfields as well
- there are more possibilities to match the action of $(\mathbb{Z}/d\mathbb{Z})^\times$ and the action of the Galois group

so far, our method has been successfully applied in 34 dimensions:

$d = 7, 12, 19, 28, 39, 52, 67, 84, 103, 124, 147, 172, 199, 259, 292, 327, 403, 487, 628, 787, 844, 964, 1027, 1228, 1299, 1447, 1684, 1852, 2404, 2707, 4099, 5779, 19603, \text{ and } 39604$
Conclusions & Outlook

- deterministic procedure to compute SIC-POVMs from Stark units
- successfully applied in 34 dimensions $d = n^2 + 3$; did not fail in any
- can we obtain a fiducial vector directly from the real Stark units, without “flipping the sign”?
- can we work with lower precision?
- can we avoid the combinatorial search in the final step?
- assuming Stark’s conjectures to be true, can be prove that our construction always works?
- can we extend the method to other dimensions?

forthcoming publication:
Marcus Appleby, Ingemar Bengtsson, Markus Grassl, Michael Harrison, Gary McConnell, “SIC-POVMs from Stark Units”
Thank you!
Danke! Merci! Dziekuje!

Acknowledgments

The ‘International Centre for Theory of Quantum Technologies’ project (contract no. 2018/MAB/5) is carried out within the International Research Agendas Programme of the Foundation for Polish Science co-financed by the European Union from the funds of the Smart Growth Operational Programme, axis IV: Increasing the research potential (Measure 4.3).

Additional computing resources were provided via MPL