Codes and Expansions (CodEx) Seminar

Computing SIC-POVMs using

Permutation Symmetries and Stark Units

Markus Grassl

> International Centre for Theory of Quantum Technologies
> University of Gdansk markus.grassl@ug.edu.pl sicpovm.markus-grassl.de

26 October 2021
in collaboration with
Marcus Appleby, Ingemar Bengtsson, Michael Harrison, Gary McConnell
additional support by the Max Planck Institute for the Science of Light, Erlangen, and MPG

Overview

- Zauner's conjecture
- numerical search
- symmetries \& Fibonacci-Lucas SIC-POVMs
- exact solutions from numerical solutions
- using overlaps
- using permutations
- numerical and exact solutions from Stark units
- conclusions \& outlook

A Simple to State Problem

Are there d^{2} vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{d^{2}} \in \mathbb{C}^{d}$ in the complex vector space of dimension d such that:
$\begin{array}{rlrl}\text { (i) } & \left\langle\boldsymbol{v}_{j} \mid \boldsymbol{v}_{j}\right\rangle & =1 & \\ \text { for } j=1, \ldots, d^{2} \\ \text { (ii) } & \left|\left\langle\boldsymbol{v}_{j} \mid \boldsymbol{v}_{k}\right\rangle\right|^{2} & =\frac{1}{d+1} & \\ \text { for } 1 \leq j<k \leq d^{2}\end{array}$
The vectors \boldsymbol{v}_{j} form an equiangular tight frame/finite unit norm tight frame.

A Simple to State Problem

Are there d^{2} vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{d^{2}} \in \mathbb{C}^{d}$ in the complex vector space of dimension d such that:

$$
\begin{equation*}
\left\langle\boldsymbol{v}_{j} \mid \boldsymbol{v}_{j}\right\rangle=1 \quad \text { for } j=1, \ldots, d^{2} \tag{i}
\end{equation*}
$$

(ii) $\quad\left|\left\langle\boldsymbol{v}_{j} \mid \boldsymbol{v}_{k}\right\rangle\right|^{2}=\frac{1}{d+1} \quad$ for $1 \leq j<k \leq d^{2}$

The vectors \boldsymbol{v}_{j} form an equiangular tight frame/finite unit norm tight frame.

All solutions form a real algebraic variety, using $2 d$ real variables per vector

$$
\boldsymbol{v}_{j}=\left(a_{j, 1}+i b_{j, 1}, a_{j, 2}+i b_{j, 2}, \ldots, a_{j, d}+i b_{j, d}\right)^{T} \quad(i=\sqrt{-1})
$$

$2 d^{3}$ variables, d^{2} equations (i) of degree 2 and $\binom{d^{2}}{2}$ equations (ii) of degree 4 .

Weyl-Heisenberg Group

- generators:

$$
H_{d}:=\langle X, Z\rangle
$$

$$
\text { where } X:=\sum_{j=0}^{d-1}|j+1\rangle\langle j| \text { and } Z:=\sum_{j=0}^{d-1} \omega_{d}^{j}|j\rangle\langle j|
$$

$$
\left(\omega_{d}:=\exp (2 \pi i / d)\right)
$$

- relations:

$$
\left(\omega_{d}^{c} X^{a} Z^{b}\right)\left(\omega_{d}^{c^{\prime}} X^{a^{\prime}} Z^{b^{\prime}}\right)=\omega_{d}^{a^{\prime} b-b^{\prime} a}\left(\omega_{d}^{c^{\prime}} X^{a^{\prime}} Z^{b^{\prime}}\right)\left(\omega_{d}^{c} X^{a} Z^{b}\right)
$$

- basis:

$$
H_{d} / \zeta\left(H_{d}\right)=\left\{X^{a} Z^{b}: a, b \in\{0, \ldots, d-1\}\right\} \cong \mathbb{Z}_{d} \times \mathbb{Z}_{d}
$$

trace-orthogonal basis of all $d \times d$ matrices

Constructing SIC-POVMs

Ansatz:

SIC-POVM that is the orbit under the Weyl-Heisenberg group H_{d}, i. e.,

$$
\begin{aligned}
\left|\boldsymbol{v}^{(a, b)}\right\rangle & :=X^{a} Z^{b}\left|\boldsymbol{v}^{(0,0)}\right\rangle \\
\left|\left\langle\boldsymbol{v}^{(a, b)} \mid \boldsymbol{v}^{\left(a^{\prime}, b^{\prime}\right)}\right\rangle\right|^{2} & = \begin{cases}1 & \text { for }(a, b)=\left(a^{\prime}, b^{\prime}\right) \\
1 /(d+1) & \text { for }(a, b) \neq\left(a^{\prime}, b^{\prime}\right)\end{cases} \\
\left|\boldsymbol{v}^{(0,0)}\right\rangle & =\sum_{j=0}^{d-1}\left(x_{2 j}+i x_{2 j+1}\right)|j\rangle, \\
\left(x_{0}, \ldots, x_{2 d-1}\right. \text { are real variables, } & \left.x_{1}=0\right)
\end{aligned}
$$

\Longrightarrow we have to find only one fiducial vector $\left|\boldsymbol{v}^{(0,0)}\right\rangle$ instead of d^{2} vectors
\Longrightarrow polynomial equations with $2 d-1$ variables, but already quite complicated for $d=6$

Jacobi Group (or Clifford Group)

- automorphism group of the Weyl-Heisenberg group H_{d}, i. e.

$$
\forall T \in J_{d}: T^{\dagger} H_{d} T=H_{d}
$$

- the action of J_{d} on H_{d} modulo phases corresponds to the symplectic group $\mathrm{SL}\left(2, \mathbb{Z}_{d}\right)$, i.e.

$$
T^{\dagger} X^{a} Z^{b} T=\omega_{d}^{c} X^{a^{\prime}} Z^{b^{\prime}} \quad \text { where }\binom{a^{\prime}}{b^{\prime}}=\tilde{T}\binom{a}{b}, \tilde{T} \in \mathrm{SL}\left(2, \mathbb{Z}_{d}\right)
$$

\Longrightarrow homomorphism $J_{d} \rightarrow \mathrm{SL}\left(2, \mathbb{Z}_{d}\right)$

- additionally: complex conjugation (anti-unitary)

$$
X^{a} Z^{b} \mapsto X^{a} Z^{-b} \quad \text { corresponding to }\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Zauner's Conjecture

[G. Zauner, Dissertation, Universität Wien, 1999]

Conjecture:

For every dimension $d \geq 2$ there exists a SIC-POVM whose elements are the orbit of a rank-one operator E_{0} under the Weyl-Heisenberg group H_{d}. What is more, E_{0} commutes with an element S of the Jacobi group J_{d}. The action of S on H_{d} modulo the center has order three.
support for this conjecture (to date):

- numerical solutions for all dimensions $d \leq 193$, plus a few more
- exact algebraic solutions for some dimensions (see below)
one of the prize problems in
[Paweł Horodecki, Łukasz Rudnicki, Karol Życzkowski, Five open problems in quantum information, arXiv:2002.03233]

Numerical Search for SIC-POVMs

- "second frame potential" for 2-designs

$$
\left.\sum_{i, j=1}^{d^{2}}\left|\left\langle v^{(i)} \otimes v^{(i)} \mid v^{(j)} \otimes v^{(j)}\right\rangle\right|^{2}=\sum_{i, j=1}^{d^{2}}\left|\left\langle v^{(i)} \mid v^{(j)}\right\rangle\right|^{4}=d^{2} \sum_{a, b=1}^{d}\left|\langle\psi| X^{a} Z^{b}\right| \psi\right\rangle\left.\right|^{4}
$$

- for any state $|\psi\rangle \in \mathbb{C}^{d}$

$$
\begin{array}{rlr}
f(|\psi\rangle) & =\sum_{j, k=1}^{d}\left|\sum_{\ell=1}^{d}\langle\psi \mid j+\ell\rangle\langle\ell \mid \psi\rangle\langle\psi \mid k+\ell\rangle\langle j+k+\ell \mid \psi\rangle\right|^{2} & \\
& =\sum_{j, k=1}^{d}|\underbrace{\sum_{\ell=1}^{d} \bar{\psi}_{j+\ell} \psi_{\ell} \bar{\psi}_{k+\ell} \psi_{j+k+\ell}}_{=: G(j, k)}|^{2} & \geq \frac{2}{d+1}
\end{array}
$$

with equality iff $|\psi\rangle$ is a fiducial vector for a Weyl-Heisenberg SIC-POVM

- gradient descent to minimize $f(|\psi\rangle)$, subject to unit norm

Numerical Search for SIC-POVMs

- for any state $|\psi\rangle \in \mathbb{C}^{d}$

$$
f(|\psi\rangle)=\sum_{j, k=1}^{d}\left|\sum_{\ell=1}^{d} \bar{\psi}_{j+\ell} \psi_{\ell} \bar{\psi}_{k+\ell} \psi_{j+k+\ell}\right|^{2} \geq \frac{2}{d+1}
$$

with equality iff $|\psi\rangle$ is a fiducial vector for a Weyl-Heisenberg SIC-POVM

- gradient descent to minimize $f(|\psi\rangle)$, subject to unit norm
- use $F(\vec{x})=f\left(\frac{P \vec{x}}{\|P \vec{x}\|}\right)$ for an arbitrary vector $\vec{x} \in \mathbb{C}^{d}$, where P is the projection onto a subspace (prescribed symmetry)
- chain rule yields a relatively simple formula for the gradient of $F(\vec{x})$ in terms of the gradient of f
- complexity $\mathcal{O}\left(d^{3}\right)$ for both the function and the gradient when storing $\mathcal{O}\left(d^{2}\right)$ intermediate values

Numerical Search for SIC-POVMs

- efficient implementation of $F(\vec{x})$ and its gradient in C++ by Andrew Scott
- parallel computation of the function/gradient using OpenMP/CUDA
- minimization using limited-memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
- search runs into local minima, we need many random initial points
- running many instances on HPC clusters by MPG and GWDG
- - for $d=189$: approx. 23.3×10^{6} trials, 3.48 CPU years
- for $d=190$: approx. 66.8×10^{6} trials, 10.51 CPU years
- for $d=193$: approx. 78.3×10^{6} trials, 13.00 CPU years
- for $d=5779: 55065$ trials, 17.69 GPU years, no success

Average Number of Iterations

Average Number of Iterations with Zauner Symmetry

Fibonacci-Lucas SIC-POVMs

[Markus Grassl \& Andrew J. Scott, JMP 58, December 2017, arXiv:1707.02944]

- (exact) symmetry analysis of a numerical solution for $d=124$ \Longrightarrow symmetry group of order 30 (prescribed order 6)
- identified as part of a series of dimensions (related to Lucas numbers) $d=4,8,19,48,124,323,844,2208,5779,15128,39604, \ldots$
- symmetry group of order $6 k$ related to Fibonacci numbers, $F=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)$
- new exact solutions for $d=124$ and $d=323$ (previously $d=48$) (found using the symmetries and via Gröbner bases)
- new numerical solutions for $d=844$ and $d=2208$ (previously $d=323$)
- generalisations related to generalised Fibonacci/Lucas numbers, using $A_{m}=\left(\begin{array}{ll}0 & 1 \\ 1 & m\end{array}\right)$

Symmetries of SIC-POVMs

SIC-POVMs by Numerical Search

Ray Class Field Conjecture

[Appleby, Flammia, McConnell \& Yard, arXiv:1604.06098 \& arXiv:1701.052000]
CodEx talks by M. Appleby, S. Flammia, G. Kopp

Ray class field conjecture

let \mathbb{E} be the field containing all rank-one projection operators of a SIC-POVM

$$
\mathbb{Q} \triangleleft \mathbb{K}=\mathbb{Q}(\sqrt{D}) \triangleleft \mathbb{E}_{0} \triangleleft \mathbb{E}_{1} \triangleleft \mathbb{E}
$$

for the minimal field:

- \mathbb{E} is the ray class field over $\mathbb{Q}(\sqrt{D})$ with conductor ${ }^{\text {a }} d^{\prime}$ with ramification at both infinite places, D is the squarefree part of $(d+1)(d-3)$
- \mathbb{E}_{1} contains the overlap phases and equals the ray class field with ramification only allowed at the infinite place taking \sqrt{D} to a positive real number
- \mathbb{E}_{0} is the Hilbert class field $H_{\mathbb{K}}$, in particular $h=\left[\mathbb{E}_{0}: \mathbb{K}\right]$ equals the class number of \mathbb{K}

$$
{ }^{\mathrm{a}} d^{\prime}=d, \text { or } d^{\prime}=2 d \text { for } d \text { even }
$$

Ray Class Field Conjecture

[Appleby, Flammia, McConnell \& Yard, arXiv:1604.06098 \& arXiv:1701.052000] CodEx talks by M. Appleby, S. Flammia, G. Kopp

Ray class field conjecture

let \mathbb{E} be the field containing all rank-one projection operators of a SIC-POVM

$$
\mathbb{Q} \triangleleft \mathbb{K}=\mathbb{Q}(\sqrt{D}) \triangleleft \mathbb{E}_{0} \triangleleft \mathbb{E}_{1} \triangleleft \mathbb{E}
$$

- "Fact 8": $\operatorname{Gal}\left(\mathbb{E}_{1} / \mathbb{E}_{0}\right)$ permutes the overlaps.

For each $\sigma \in \operatorname{Gal}\left(\mathbb{E}_{1} / \mathbb{E}_{0}\right)$ there is a matrix $G_{\sigma} \in \mathrm{GL}\left(2, \mathbb{Z} / d^{\prime} \mathbb{Z}\right)$ such that ${ }^{\text {a }}$

$$
\sigma\left(\langle\psi| D_{\boldsymbol{p}}|\psi\rangle\right)=\langle\psi| D_{G_{\sigma} \boldsymbol{p}}|\psi\rangle
$$

G_{σ} commutes with matrices F related to symmetries U_{F} of the fiducial vector $|\psi\rangle$.

$$
{ }^{\mathrm{a}} D_{\boldsymbol{p}}=D_{a, b}=\left(e^{\frac{i \pi}{d}}\right)^{a b} X^{a} Z^{b}
$$

Exact Solutions from Numerical Solutions

[Appleby, Chien, Flammia \& Waldron, J. Phys. A. 51, 2018, arXiv:1703.05981]

- matrix group $\mathcal{M}=\left\{G_{\sigma}: \sigma \in \operatorname{Gal}\left(\mathbb{E}_{1} / \mathbb{E}_{0}\right)\right\}$, commutes with the symmetry
- projection operator $\Pi=|\psi\rangle\langle\psi|$

$$
\text { "Fact 8:" } \quad \sigma\left(\operatorname{Tr}\left(\Pi D_{\boldsymbol{p}}\right)\right)=\operatorname{Tr}\left(\Pi D_{G_{\sigma} \boldsymbol{p}}\right)
$$

- expansion coefficients $c_{\boldsymbol{p}}=\operatorname{Tr}\left(\Pi D_{\boldsymbol{p}}\right)$ in the same orbit under \mathcal{M} are related by Galois conjugation
- the coefficients of the polynomial $f_{\boldsymbol{p}_{0}}(z)=\prod_{\boldsymbol{p} \in \boldsymbol{p}_{0}^{M}}\left(z-c_{\boldsymbol{p}}\right)$ lie in a number field of "small" degree
- find the exact minimal polynomials of those coefficients (requires high-precision numerical solution)
- find the roots of the exact polynomials $f_{p_{0}}(z)$ in the ray class field
- compute Π from the d^{2} expansion coefficients $c_{\boldsymbol{p}}$
- exact solutions for some $d \leq 48$ ($d \leq 100$ work in progress)

More Exact Solutions from Numerical Solutions

[Markus Grassl, Exact SIC-POVMs from permutation symmetries, in preparation]

- when G_{σ} has determinant 1 , there exists a unitary $U_{G_{\sigma}}:=T_{\sigma}$ with

$$
\sigma\left(\operatorname{Tr}\left(\Pi D_{\boldsymbol{p}}\right)\right)=\operatorname{Tr}\left(\Pi D_{G_{\sigma} \boldsymbol{p}}\right)=\operatorname{Tr}\left(\Pi T_{\sigma} D_{\boldsymbol{p}} T_{\sigma}^{\dagger}\right)=\operatorname{Tr}\left(T_{\sigma}^{\dagger} \Pi T_{\sigma} D_{\boldsymbol{p}}\right)
$$

\Longrightarrow action of T_{σ}^{\dagger} on the projection Π and on the state $|\psi\rangle$

- when $G_{\sigma}=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \alpha^{-1}\end{array}\right)$ is additionally diagonal, then T_{σ} is a permutation matrix
- moreover, assume that $\sigma\left(D_{\boldsymbol{p}}\right)=D_{\boldsymbol{p}}$; then

$$
\sigma(\Pi)=T_{\sigma}^{\dagger} \Pi T_{\sigma}
$$

and hence

$$
\sigma\left(\Pi_{j, k}\right)=\Pi_{\alpha j, \alpha k}
$$

where the indices are computed modulo d

More Exact Solutions from Numerical Solutions

- for the first column of Π we have

$$
\sigma\left(\Pi_{j, 0}\right)=\Pi_{\alpha j, 0} \quad \text { for } j=0, \ldots, d-1
$$

- we can take the first column as (unnormalised) fiducial vector \boldsymbol{v}, unless it is zero (which was observed for $d=26,28,62,98,228$) $\Longrightarrow \sigma$ permutes the components of the fiducial vector, stabilising the first coordinate
- when the first column is zero, consider a non-zero column k :

$$
\sigma\left(\Pi_{j, k}\right)=\Pi_{\alpha j, \alpha k} \stackrel{(*)}{=} \gamma \Pi_{\alpha j, k} \quad \text { for } j=0, \ldots, d-1
$$

$\Longrightarrow \sigma$ gives rise to a projective permutation action
\Longrightarrow consider the action on ratios $v_{j} / v_{j^{\prime}}$
${ }^{(*)} \Pi$ has rank one, so column αk is proportional to column k, i.e., $\Pi_{j, \alpha k}=\gamma \Pi_{j, k}$

More Exact Solutions from Numerical Solutions

outline of the procedure:

- compute a numerical fiducial vector with prescribed symmetry S
- determine the diagonal matrices $G_{\sigma} \in \mathrm{SL}\left(2, \mathbb{Z} / d^{\prime} \mathbb{Z}\right)$ in the centraliser of S
- the diagonal matrices correspond to a subgroup $H \leq\left(Z / d^{\prime} \mathbb{Z}\right)^{\times}$
- consider the rescaled fiducial vector ${ }^{\text {a }} \boldsymbol{v}$ with $v_{0}=1$
- the coefficients of the polynomial $f_{j}(z)=\prod_{\alpha \in H}\left(z-v_{\alpha j}\right)$ lie in a number field of "small" degree, fixed by (a subgroup of) the Galois group
- similar as before, find the exact coefficients of $f_{j}(z)$ from a high-precision numerical solution, and then compute its exact roots
\Longrightarrow only $\mathcal{O}(d)$ numbers in a field of smaller degree

[^0]
More Exact Solutions from Numerical Solutions

- the assumption that $\sigma\left(D_{\boldsymbol{p}}\right)=D_{\boldsymbol{p}}$ appears to be true
- new exact solutions for 57 additional dimensions (so far)

$$
\begin{aligned}
d= & 26,38,42,49,52,57,61,62,63,65,67,73,74,78,79,84,86,91,93,95, \\
& 97,98,103,109,111,122,127,129,133,134,139,143,146,147 \\
& 151,155,157,163,168,169,172,181,182,183,193,199 \\
& 201,228,259,292,327,364,399,403,489,844,1299
\end{aligned}
$$

- fiducial vectors lie in a proper ("small") subfield of the ray class field from before, that intersects with the cyclotomic field $\mathbb{Q}\left(\zeta_{d^{\prime}}\right)$ trivially or in a smaller cyclotomic field
- "small ray class field conjecture":

The minimal field containing a (suitably rescaled) fiducial vector is a ray class field whose conductor is a particular factor of the ideal $d \mathcal{O}_{\mathrm{IK}}$ with ramification at one of the infinite places.

Prime Dimensions $p \equiv 1 \bmod 3$

- for prime dimensions $d=p \equiv 1 \bmod 3$, the Zauner symmetry F_{z} is conjugate to a diagonal matrix \widetilde{F}_{z}
- the centraliser of \widetilde{F}_{z} contains all diagonal matrices in $\operatorname{SL}(2, \mathbb{Z} / d \mathbb{Z})$
- the components $v_{j}, j=1, \ldots, d-1$, of the fiducial vector (with $v_{0}=1$) are on a single orbit with respect to the Galois group, i.e.,

$$
v_{\theta^{k}}=\sigma^{k}\left(v_{1}\right)
$$

for generators θ and σ of $(\mathbb{Z} / d \mathbb{Z})^{\times}$and the Galois group, resp.

- for a permutation symmetry of order 3ℓ, we need only $m=\frac{d-1}{3 \ell}$ numbers

dream:

find a direct way to determine the algebraic number v_{1}, as well as σ and θ

Prime Dimensions $p=n^{2}+3$

[Appleby, Bengtsson, Grassl, Harrison, McConnell, "SIC-POVMs from Stark Units"]

Conjecture:

- for prime dimensions $p=n^{2}+3(n>0)$, there is an almost flat fiducial vector \boldsymbol{v} with

$$
v_{j}= \begin{cases}-2-\sqrt{d+1} & j=0 \\ \sqrt{v_{0} e^{i \vartheta_{j}}} & j>0\end{cases}
$$

- the components of \boldsymbol{v} generate a "small" ray class field $\mathbb{K}^{\mathfrak{m}}$ with finite modulus $\sqrt{d+1} \pm 1$ and ramification at one infinite place
- the phases $e^{i \vartheta_{j}}$ are Galois conjugates of (real) Stark units for the ray class field $\mathbb{K}^{\mathfrak{m}}$

Application of Stark's Conjectures

- for certain ray class fields $\mathbb{K}^{\mathfrak{m}}$ over the real quadratic field $\mathbb{K}=\mathbb{Q}(\sqrt{D})$, $D>0$, one can compute numerical approximations of Stark units ϵ_{σ} via special values of derivatives of L-functions
- the Stark units are labelled by elements σ of the Galois group $\operatorname{Gal}\left(\mathbb{K}^{\mathfrak{m}} / \mathbb{K}\right)$ such that $\epsilon_{\sigma}=\sigma\left(\epsilon_{0}\right)$
- from numerical Stark units with sufficiently high precision, we can deduce their exact minimal polynomial over \mathbb{K}
- we have a heuristic that allows us to deduce the required precision from numerical Stark units with low precision
- the complexity of the calculation appears to be roughly $\mathcal{O}\left(\operatorname{deg}\left(\mathbb{K}^{\mathfrak{m}} / \mathbb{K}\right) \times(\# \text { digits })^{3.3}\right)$

Runtime L-Functions

total CPU time to compute the numerical derivative of L-functions using Magma and PARI/GP (last three cases)

d	$\operatorname{deg}\left(\mathbb{K}^{\mathfrak{m}} / \mathbb{K}\right)$	log height	precision	CPU time
487	324	424	1000 digits	251 hours
787	262	299	1000 digits	118 hours
2707	902	1861	3800 digits	900 days
4099	1366	974	2000 digits	170 days
5779	214	127	300 digits	18 min
1447	964	2158	4600 digits	111 days
19603	2178	1754	4000 digits	82 days
2503	3336	6464	13000 digits	60.5 years

Flipping the Sign

- real quadratic field $\mathbb{K}=\mathbb{Q}(\sqrt{D})$ with non-trivial automorphism $\tau: \sqrt{D} \mapsto-\sqrt{D}$
- embedding $\mathfrak{j}: \mathbb{K} \hookrightarrow \mathbb{R}, \mathfrak{j}(\sqrt{D})>0, \mathfrak{j}^{\tau}(\sqrt{D})=\mathfrak{j}\left((\sqrt{D})^{\tau}\right)<0$
- "real" Stark units $\epsilon_{\sigma}: \mathfrak{j}\left(\epsilon_{\sigma}\right)>0$
- "complex" Stark units $\epsilon_{\sigma}^{\tau}: \mathfrak{j}\left(\epsilon_{\sigma}^{\tau}\right)=\mathfrak{j}^{\tau}\left(\epsilon_{\sigma}\right) \in \mathbb{C} \backslash \mathbb{R}$
- minimal polynomial of $\epsilon_{\sigma}: \quad p_{1}(t) \in \mathbb{K}[t]$
\Longrightarrow minimal polynomial of $\epsilon_{\sigma}^{\tau}: p_{2}(t)=p_{1}^{\tau}(t)$
- obstacle:
operation of σ on ϵ_{0}^{τ} would require factoring $p_{2}(t)$

for simplicity, we assume in the following class number $h=1$, i.e., $H_{\mathbb{K}}=\mathbb{K}$

The Galois Polynomial

- fixing some labelling, we know how σ permutes the m (numerical) Stark units $\epsilon_{j}: \sigma\left(\epsilon_{j}\right)=\sigma_{\pi_{\sigma}(j)}$ for some permutation π_{σ}
- there exists a unique polynomial g_{1} of degree at most $m-1$ such that

$$
\begin{equation*}
g_{1}\left(\epsilon_{j}\right)=\epsilon_{\pi_{\sigma}(j)} \quad \text { for } j=1, \ldots, m \tag{1}
\end{equation*}
$$

- using Newton interpolation, g_{1} can be computed with $\mathcal{O}\left(m^{2}\right)$ arithmetic operations $\left(\mathcal{O}\left(m(\log m)^{2}\right)\right.$ when using FFT-based methods)
- the coefficients of g_{1} are in \mathbb{K}, as (1) is invariant wrt. $\operatorname{Gal}\left(\mathbb{K}^{\mathfrak{p} j^{\tau}} / \mathbb{K}\right)$
- $g_{2}(t)=g_{1}^{\tau}(t)$ corresponds to the action of σ on $\epsilon_{j}^{\tau}: g_{2}\left(\epsilon_{j}^{\tau}\right)=\epsilon_{\pi_{\sigma}(j)}^{\tau}$
- potential computational obstacle:
we don't know an a priori bound for the required precision (for $d=19603$, the coefficients have more than 1 million digits)

Solving the Sign Problem

Recall: We conjecture that the components of the fiducial vector are square roots of Galois conjugates of Stark units, i.e., $v_{\theta^{k}}=\sqrt{v_{0} \sigma^{k}\left(\epsilon_{0}^{\tau}\right)}$.
Problem: there are two square roots $\pm \sqrt{v_{0} \sigma^{k}\left(\epsilon_{0}^{\tau}\right)}$

Solution:

- it turns out that polynomial $p_{2}\left(t^{2} / v_{0}\right)$ with $v_{0}=-2-\sqrt{d+1}$ factors in $\mathbb{K}[t]$ as

$$
v_{0}^{m} p_{2}\left(t^{2} / v_{0}\right)=p_{4}(t) p_{4}(-t)
$$

- pick the factor $p_{4}(t)$ and check which of the square roots is a root of $p_{4}(t)$
- we are left with a global sign ambiguity, i.e., two possibilities
- note: it does not matter which of the Galois conjugates of the Stark units is assigned to ϵ_{0}^{τ}; all choices yield eventually fiducial vectors

Final Step: Combinatorial Search

so far, we have

- exact minimal polynomials $p_{1}(t), p_{2}(t), p_{4}(t) \in \mathbb{K}[t]$ and exact Galois polynomials $g_{1}(t), g_{2}(t) \in \mathbb{K}[t]$
- numerical square roots $\sqrt{v_{0} \epsilon_{j}^{\tau}}$ (up to a global sign) together with the permutation action of the (cyclic) Galois group $\operatorname{Gal}\left(\mathbb{K}^{\mathfrak{m}} / H_{\mathrm{K}}\right)$ on them final step:
- we have to identify which primitive element $\theta \in(\mathbb{Z} / d \mathbb{Z})^{\times}$corresponds to the action of σ
- we have to fix the global sign (we can choose the sign of the first coordinate)
- compute a (numerical) vector \boldsymbol{v} for all choices (less than d) and test the overlap $|\langle\boldsymbol{v}| X| \boldsymbol{v}\rangle\left.\right|^{2} /\|\boldsymbol{v}\|^{4} \stackrel{?}{=} \frac{1}{d+1}$
- we know that $\sigma^{m / 2}$ corresponds to complex conjugation

Exact Solution

We can also compute an exact representation of the fiducial vector without explicit factorisation in the extension field:

- define the field $\mathbb{L}=H_{\mathbb{K}}(\gamma)$ with $p_{4}(\gamma)=0$
- compute the exact Galois polynomial $g_{4}(t) \in H_{\mathrm{K}}[t]$ from the numerical values $\sqrt{v_{0} \epsilon_{\sigma}^{\tau}}$
- the action of the Galois automorphism σ on \mathbb{L} is defined by $\sigma: \gamma \mapsto g_{4}(\gamma)$
- we can compute the components of the fiducial vector using

$$
v_{0}= \pm(2+\sqrt{d+1}), \quad v_{1}=\gamma, \quad \text { and } v_{\theta j}=g_{4}\left(v_{j}\right) \text { for } j>0
$$

computational obstacles: missing an a priori bound on the precision to compute the exact Galois polynomial $p_{4}(t)$ and arithmetic in the field \mathbb{L} is slow when the degree is large (use tower of subfields if possible)

Verification of the Solution

- second frame potential for a fiducial vector

$$
f(|\psi\rangle)=\sum_{j, k=1}^{d}|\underbrace{\sum_{\ell=1}^{d} \bar{\psi}_{j+\ell} \psi_{\ell} \bar{\psi}_{k+\ell} \psi_{j+k+\ell}}_{=: G(j, k)}|^{2}=\frac{2}{d+1}
$$

- moreover $G(j, k)=\frac{\delta_{j, 0}+\delta_{k, 0}}{d+1}$
- $G(j, k)$ has an eightfold symmetry
- we don't need d-th roots of unity
- $\mathcal{O}\left(d^{3}\right)$ arithmetic operations
verifying the solution takes longer than computing it

Runtime Verification

CPU time for the exact/numerical verification of the solution

d	$\operatorname{deg}\left(\mathbb{K}^{\mathfrak{m}} / \mathbb{K}\right)$	precision	CPU time	$G(j, k)$
103	$2^{2} \times 17$	exact	440 s	1.3 s
199	2×11	exact	310 s	0.3 s
487	$2^{2} \times 3^{4}$	exact	31 days	315 s
787	2×131	10000 digits	3 hours	65 min
1447	$2^{2} \times 241$	10000 digits	17.0 hours	
2707	$2 \times 11 \times 41$	2000 digits	11.2 hours	
4099	2×683	2000 digits	36.5 hours	
5779	2×107	2000 digits	100 hours	88 min
19603	$2 \times 3^{2} \times 11^{2}$	1000 digits	1367 days	
39604	$2^{2} \times 3^{2} \times 5^{2}$	100 digits	684 days	≈ 28 days

Solutions for $d=n^{2}+3$

- the method can be generalised to composite dimensions $d=n^{2}+3$
- even dimensions $d=n^{2}+3$ are divisible by 4 , but not by 8 ; almost flat fiducial vector after change of basis
- for composite dimensions, one has to compute Stark units for certain subfields as well
- there are more possibilities to match the action of $(\mathbb{Z} / d \mathbb{Z})^{\times}$and the action of the Galois group
so far, our method has been successfully applied in 34 dimensions:
$d=7,12,19,28,39,52,67,84,103,124,147,172,199,259,292,327,403,487$, $628,787,844,964,1027,1228,1299,1447,1684,1852,2404,2707,4099,5779$, 19603, and 39604

Conclusions \& Outlook

- deterministic procedure to compute SIC-POVMs from Stark units
- successfully applied in 34 dimensions $d=n^{2}+3$; did not fail in any
- can we obtain a fiducial vector directly from the real Stark units, without "flipping the sign"?
- can we work with lower precision?
- can we avoid the combinatorial search in the final step?
- assuming Stark's conjectures to be true, can be prove that our construction always works?
- can we extend the method to other dimensions?
forthcoming publication:
Marcus Appleby, Ingemar Bengtsson, Markus Grassl, Michael Harrison, Gary McConnell, "SIC-POVMs from Stark Units"

Thank you! Danke! Merci! Dziekuje!

Acknowledgments

The 'International Centre for Theory of Quantum Technologies' project (contract no. 2018/MAB/5) is carried out within the International Research Agendas Programme of the Foundation for Polish Science co-financed by the European Union from the funds of the Smart Growth Operational Programme, axis IV: Increasing the research potential (Measure 4.3).

Smart Growth

Republic
of Poland

[^0]: ${ }^{\text {a assuming }} v_{0} \neq 0$ for simplicity here

