

Codes and Expansions (CodEx) Seminar

Computing SIC-POVMs using Permutation Symmetries and Stark Units

Markus Grassl

International Centre for Theory of Quantum Technologies
University of Gdansk

markus.grassl@ug.edu.pl sicpovm.markus-grassl.de

26 October 2021

in collaboration with

Marcus Appleby, Ingemar Bengtsson, Michael Harrison, Gary McConnell

additional support by the Max Planck Institute for the Science of Light, Erlangen, and MPG

Overview

- Zauner's conjecture
- numerical search
- symmetries & Fibonacci-Lucas SIC-POVMs
- exact solutions from numerical solutions
 - using overlaps
 - using permutations
- numerical and exact solutions from Stark units
- conclusions & outlook

A Simple to State Problem

Are there d^2 vectors $v_1, v_2, \ldots, v_{d^2} \in \mathbb{C}^d$ in the complex vector space of dimension d such that:

(i)
$$\langle \boldsymbol{v}_j | \boldsymbol{v}_j \rangle = 1$$
 for $j = 1, \dots, d^2$

(ii)
$$|\langle m{v}_j | m{v}_k
angle|^2 = rac{1}{d+1}$$
 for $1 \leq j < k \leq d^2$

The vectors v_j form an equiangular tight frame/finite unit norm tight frame.

A Simple to State Problem

Are there d^2 vectors $v_1, v_2, \ldots, v_{d^2} \in \mathbb{C}^d$ in the complex vector space of dimension d such that:

(i)
$$\langle \boldsymbol{v}_j | \boldsymbol{v}_j \rangle = 1$$
 for $j = 1, \dots, d^2$

(ii)
$$|\langle {m v}_j | {m v}_k
angle|^2 = rac{1}{d+1}$$
 for $1 \leq j < k \leq d^2$

The vectors v_j form an equiangular tight frame/finite unit norm tight frame.

All solutions form a real algebraic variety, using 2d real variables per vector

$$\mathbf{v}_j = (a_{j,1} + ib_{j,1}, a_{j,2} + ib_{j,2}, \dots, a_{j,d} + ib_{j,d})^T$$
 $(i = \sqrt{-1})$

 $2d^3$ variables, d^2 equations (i) of degree 2 and $\binom{d^2}{2}$ equations (ii) of degree 4.

Weyl-Heisenberg Group

• generators:

$$H_d := \langle X, Z \rangle$$

where
$$X:=\sum_{j=0}^{d-1}|j+1\rangle\langle j|$$
 and $Z:=\sum_{j=0}^{d-1}\omega_d^j|j\rangle\langle j|$
$$\left(\omega_d:=\exp(2\pi i/d)\right)$$

relations:

$$\left(\omega_d^c X^a Z^b\right) \left(\omega_d^{c'} X^{a'} Z^{b'}\right) = \omega_d^{a'b-b'a} \left(\omega_d^{c'} X^{a'} Z^{b'}\right) \left(\omega_d^c X^a Z^b\right)$$

basis:

$$H_d / \zeta(H_d) = \{X^a Z^b \colon a, b \in \{0, \dots, d-1\}\} \cong \mathbb{Z}_d \times \mathbb{Z}_d$$

trace-orthogonal basis of all $d \times d$ matrices

Constructing SIC-POVMs

Ansatz:

SIC-POVM that is the orbit under the Weyl-Heisenberg group H_d , i. e.,

$$|\boldsymbol{v}^{(a,b)}\rangle := X^a Z^b |\boldsymbol{v}^{(0,0)}\rangle$$

$$|\langle \boldsymbol{v}^{(a,b)} | \boldsymbol{v}^{(a',b')} \rangle|^2 = \begin{cases} 1 & \text{for } (a,b) = (a',b'), \\ 1/(d+1) & \text{for } (a,b) \neq (a',b') \end{cases}$$

$$|\mathbf{v}^{(0,0)}\rangle = \sum_{j=0}^{d-1} (x_{2j} + ix_{2j+1})|j\rangle,$$

 (x_0,\ldots,x_{2d-1}) are real variables, $x_1=0$

- \Longrightarrow we have to find only one *fiducial* vector $|m{v}^{(0,0)}
 angle$ instead of d^2 vectors
- \Longrightarrow polynomial equations with 2d-1 variables, but already quite complicated for d=6

Jacobi Group (or Clifford Group)

 \bullet automorphism group of the Weyl-Heisenberg group H_d , i. e.

$$\forall T \in J_d : T^{\dagger} H_d T = H_d$$

• the action of J_d on H_d modulo phases corresponds to the symplectic group $SL(2, \mathbb{Z}_d)$, i.e.

$$T^\dagger X^a Z^b T = \omega_d^c X^{a'} Z^{b'}$$
 where $egin{pmatrix} a' \ b' \end{pmatrix} = ilde{T} egin{pmatrix} a \ b \end{pmatrix}$, $ilde{T} \in \mathrm{SL}(2, \mathbb{Z}_d)$

- \Longrightarrow homomorphism $J_d \to \mathrm{SL}(2,\mathbb{Z}_d)$
- additionally: complex conjugation (anti-unitary)

$$X^a Z^b \mapsto X^a Z^{-b}$$
 corresponding to $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Zauner's Conjecture

[G. Zauner, Dissertation, Universität Wien, 1999]

Conjecture:

For every dimension $d \geq 2$ there exists a SIC-POVM whose elements are the orbit of a rank-one operator E_0 under the Weyl-Heisenberg group H_d . What is more, E_0 commutes with an element S of the Jacobi group J_d . The action of S on H_d modulo the center has order three.

support for this conjecture (to date):

- numerical solutions for all dimensions $d \leq 193$, plus a few more
- exact algebraic solutions for some dimensions (see below)

one of the prize problems in

[Paweł Horodecki, Łukasz Rudnicki, Karol Życzkowski, Five open problems in quantum information, arXiv:2002.03233]

Numerical Search for SIC-POVMs

• "second frame potential" for 2-designs

$$\sum_{i,j=1}^{d^2} |\langle v^{(i)} \otimes v^{(i)} | v^{(j)} \otimes v^{(j)} \rangle|^2 = \sum_{i,j=1}^{d^2} |\langle v^{(i)} | v^{(j)} \rangle|^4 = d^2 \sum_{a,b=1}^d |\langle \psi | X^a Z^b | \psi \rangle|^4$$

ullet for any state $|\psi
angle\in\mathbb{C}^d$

$$f(|\psi\rangle) = \sum_{j,k=1}^{d} \left| \sum_{\ell=1}^{d} \langle \psi | j + \ell \rangle \langle \ell | \psi \rangle \langle \psi | k + \ell \rangle \langle j + k + \ell | \psi \rangle \right|^{2}$$

$$= \sum_{j,k=1}^{d} \left| \sum_{\ell=1}^{d} \overline{\psi}_{j+\ell} \, \psi_{\ell} \, \overline{\psi}_{k+\ell} \, \psi_{j+k+\ell} \right|^{2} \geq \frac{2}{d+1}$$

$$=:G(j,k)$$

with equality iff $|\psi\rangle$ is a fiducial vector for a Weyl-Heisenberg SIC-POVM

ullet gradient descent to minimize $f(|\psi\rangle)$, subject to unit norm

Numerical Search for SIC-POVMs

ullet for any state $|\psi
angle\in\mathbb{C}^d$

$$f(|\psi\rangle) = \sum_{j,k=1}^{d} \left| \sum_{\ell=1}^{d} \overline{\psi}_{j+\ell} \, \psi_{\ell} \, \overline{\psi}_{k+\ell} \, \psi_{j+k+\ell} \right|^{2} \ge \frac{2}{d+1}$$

with equality iff $|\psi\rangle$ is a fiducial vector for a Weyl-Heisenberg SIC-POVM

- gradient descent to minimize $f(|\psi\rangle)$, subject to unit norm
- use $F(\vec{x}) = f\left(\frac{P\vec{x}}{\|P\vec{x}\|}\right)$ for an arbitrary vector $\vec{x} \in \mathbb{C}^d$, where P is the projection onto a subspace (prescribed symmetry)
- ullet chain rule yields a relatively simple formula for the gradient of $F(\vec{x})$ in terms of the gradient of f
- ullet complexity $\mathcal{O}(d^3)$ for both the function and the gradient when storing $\mathcal{O}(d^2)$ intermediate values

Numerical Search for SIC-POVMs

- ullet efficient implementation of $F(\vec{x})$ and its gradient in C++ by Andrew Scott
- parallel computation of the function/gradient using OpenMP/CUDA
- minimization using limited-memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
- search runs into local minima, we need many random initial points
- running many instances on HPC clusters by MPG and GWDG
- - for d=189: approx. 23.3×10^6 trials, 3.48 CPU years
 - for d=190: approx. 66.8×10^6 trials, 10.51 CPU years
 - for d=193: approx. 78.3×10^6 trials, 13.00 CPU years
 - for d=5779: 55065 trials, 17.69 GPU years, no success

Average Number of Iterations

average number of iterations (100 solutions)

Average Number of Iterations with Zauner Symmetry

Fibonacci-Lucas SIC-POVMs

[Markus Grassl & Andrew J. Scott, JMP 58, December 2017, arXiv:1707.02944]

- (exact) symmetry analysis of a numerical solution for d=124 \Longrightarrow symmetry group of order 30 (prescribed order 6)
- identified as part of a series of dimensions (related to Lucas numbers) d = 4, 8, 19, 48, 124, 323, 844, 2208, 5779, 15128, 39604, ...
- symmetry group of order 6k related to Fibonacci numbers, $F = \left(\begin{smallmatrix} 0 & 1 \\ 1 & 1 \end{smallmatrix} \right)$
- new exact solutions for d=124 and d=323 (previously d=48) (found using the symmetries and via Gröbner bases)
- ullet new numerical solutions for d=844 and d=2208 (previously d=323)
- \bullet generalisations related to generalised Fibonacci/Lucas numbers, using $A_m=\left(\begin{smallmatrix}0&1\\1&m\end{smallmatrix}\right)$

Symmetries of SIC-POVMs

SIC-POVMs by Numerical Search

Ray Class Field Conjecture

[Appleby, Flammia, McConnell & Yard, arXiv:1604.06098 & arXiv:1701.052000] CodEx talks by M. Appleby, S. Flammia, G. Kopp

Ray class field conjecture

let ${\mathbb E}$ be the field containing all rank-one projection operators of a SIC-POVM

$$\mathbb{Q} \triangleleft \mathbb{K} = \mathbb{Q}(\sqrt{D}) \triangleleft \mathbb{E}_0 \triangleleft \mathbb{E}_1 \triangleleft \mathbb{E}$$

for the minimal field:

- ${\mathbb E}$ is the ray class field over ${\mathbb Q}(\sqrt{D})$ with conductor d' with ramification at both infinite places, D is the squarefree part of (d+1)(d-3)
- \mathbb{E}_1 contains the overlap phases and equals the ray class field with ramification only allowed at the infinite place taking \sqrt{D} to a positive real number
- \mathbb{E}_0 is the Hilbert class field $H_{\mathbb{K}}$, in particular $h = [\mathbb{E}_0 : \mathbb{K}]$ equals the class number of \mathbb{K}

 $^{^{\}mathbf{a}}d'=d$, or d'=2d for d even

Ray Class Field Conjecture

[Appleby, Flammia, McConnell & Yard, arXiv:1604.06098 & arXiv:1701.052000] CodEx talks by M. Appleby, S. Flammia, G. Kopp

Ray class field conjecture

let ${
m I}{
m E}$ be the field containing all rank-one projection operators of a SIC-POVM

$$\mathbb{Q} \triangleleft \mathbb{K} = \mathbb{Q}(\sqrt{D}) \triangleleft \mathbb{E}_0 \triangleleft \mathbb{E}_1 \triangleleft \mathbb{E}$$

• "Fact 8": $Gal(\mathbb{E}_1/\mathbb{E}_0)$ permutes the overlaps. For each $\sigma \in Gal(\mathbb{E}_1/\mathbb{E}_0)$ there is a matrix $G_{\sigma} \in GL(2,\mathbb{Z}/d'\mathbb{Z})$ such that

$$\sigma(\langle \psi | D_{\mathbf{p}} | \psi \rangle) = \langle \psi | D_{G_{\sigma} \mathbf{p}} | \psi \rangle.$$

 G_{σ} commutes with matrices F related to symmetries U_F of the fiducial vector $|\psi\rangle$.

$${}^{\mathbf{a}}D_{\mathbf{p}} = D_{a,b} = \left(e^{\frac{i\pi}{d}}\right)^{ab} X^{a} Z^{b}$$

[Appleby, Chien, Flammia & Waldron, J. Phys. A. 51, 2018, arXiv:1703.05981]

- matrix group $\mathcal{M} = \{G_{\sigma} : \sigma \in \operatorname{Gal}(\mathbb{E}_1/\mathbb{E}_0)\}$, commutes with the symmetry
- projection operator $\Pi = |\psi\rangle\langle\psi|$

"Fact 8:"
$$\sigma \left(\operatorname{Tr}(\Pi D_{\boldsymbol{p}}) \right) = \operatorname{Tr} \left(\Pi D_{G_{\sigma} \boldsymbol{p}} \right)$$

- ullet expansion coefficients $c_{m p}={
 m Tr}(\Pi D_{m p})$ in the same orbit under ${\cal M}$ are related by Galois conjugation
- the coefficients of the polynomial $f_{m p_0}(z)=\prod_{m p\in m p_0^{\mathcal M}}(z-c_{m p})$

lie in a number field of "small" degree

- find the exact minimal polynomials of those coefficients (requires high-precision numerical solution)
- find the roots of the exact polynomials $f_{m{p}_0}(z)$ in the ray class field
- ullet compute Π from the d^2 expansion coefficients $c_{m p}$
- exact solutions for some $d \le 48$ ($d \le 100$ work in progress)

[Markus Grassl, Exact SIC-POVMs from permutation symmetries, in preparation]

ullet when G_{σ} has determinant 1, there exists a unitary $U_{G_{\sigma}}:=T_{\sigma}$ with

$$\sigma\left(\operatorname{Tr}(\Pi D_{\boldsymbol{p}})\right) = \operatorname{Tr}(\Pi D_{G_{\sigma}\boldsymbol{p}}) = \operatorname{Tr}(\Pi T_{\sigma} D_{\boldsymbol{p}} T_{\sigma}^{\dagger}) = \operatorname{Tr}(T_{\sigma}^{\dagger} \Pi T_{\sigma} D_{\boldsymbol{p}})$$

 \Longrightarrow action of T_{σ}^{\dagger} on the projection Π and on the state $|\psi\rangle$

- when $G_{\sigma}=\left(egin{array}{cc} \alpha & 0 \\ 0 & \alpha^{-1} \end{array}\right)$ is additionally diagonal, then T_{σ} is a permutation matrix
- ullet moreover, assume that $\sigma(D_{m p})=D_{m p}$; then

$$\sigma(\Pi) = T_{\sigma}^{\dagger} \Pi T_{\sigma}$$

and hence

$$\sigma(\Pi_{j,k}) = \Pi_{\alpha j,\alpha k}$$

where the indices are computed modulo d

 \bullet for the first column of Π we have

$$\sigma(\Pi_{j,0}) = \Pi_{\alpha j,0} \qquad \text{for } j = 0, \dots, d-1$$

- ullet we can take the first column as (unnormalised) fiducial vector $m{v}$, unless it is zero (which was observed for d=26,28,62,98,228)
 - $\Longrightarrow \sigma$ permutes the components of the fiducial vector, stabilising the first coordinate
- \bullet when the first column is zero, consider a non-zero column k:

$$\sigma(\Pi_{j,k}) = \Pi_{\alpha j,\alpha k} \stackrel{(*)}{=} \gamma \Pi_{\alpha j,k} \quad \text{for } j = 0,\dots,d-1$$

- $\Longrightarrow \sigma$ gives rise to a projective permutation action
- \Longrightarrow consider the action on ratios $v_j/v_{j'}$

^(*) Π has rank one, so column αk is proportional to column k, i.e., $\Pi_{j,\alpha k}=\gamma\Pi_{j,k}$

outline of the procedure:

- ullet compute a numerical fiducial vector with prescribed symmetry S
- determine the diagonal matrices $G_{\sigma} \in \mathrm{SL}(2,\mathbb{Z}/d'\mathbb{Z})$ in the centraliser of S
- ullet the diagonal matrices correspond to a subgroup $H \leq (Z/d'\mathbb{Z})^{\times}$
- ullet consider the rescaled fiducial vector $oldsymbol{v}$ with $v_0=1$
- the coefficients of the polynomial $f_j(z) = \prod_{\alpha \in H} (z v_{\alpha j})$ lie in a number field of "small" degree, fixed by (a subgroup of) the Galois group
- similar as before, find the exact coefficients of $f_j(z)$ from a high-precision numerical solution, and then compute its exact roots \Longrightarrow only $\mathcal{O}(d)$ numbers in a field of smaller degree

^aassuming $v_0 \neq 0$ for simplicity here

- the assumption that $\sigma(D_p) = D_p$ appears to be true
- new exact solutions for 57 additional dimensions (so far)

```
d = 26, 38, 42, 49, 52, 57, 61, 62, 63, 65, 67, 73, 74, 78, 79, 84, 86, 91, 93, 95, 97, 98, 103, 109, 111, 122, 127, 129, 133, 134, 139, 143, 146, 147, 151, 155, 157, 163, 168, 169, 172, 181, 182, 183, 193, 199, 201, 228, 259, 292, 327, 364, 399, 403, 489, 844, 1299
```

- fiducial vectors lie in a proper ("small") subfield of the ray class field from before, that intersects with the cyclotomic field $\mathbb{Q}(\zeta_{d'})$ trivially or in a smaller cyclotomic field
- "small ray class field conjecture": The minimal field containing a (suitably rescaled) fiducial vector is a ray class field whose conductor is a particular factor of the ideal $d\mathcal{O}_{\mathbb{K}}$ with ramification at one of the infinite places.

Prime Dimensions $p \equiv 1 \mod 3$

- \bullet for prime dimensions $d=p\equiv 1 \bmod 3$, the Zauner symmetry F_z is conjugate to a diagonal matrix \widetilde{F}_z
- ullet the centraliser of \widetilde{F}_z contains all diagonal matrices in $\mathrm{SL}(2,\mathbb{Z}/d\mathbb{Z})$
- the components v_j , $j=1,\ldots,d-1$, of the fiducial vector (with $v_0=1$) are on a single orbit with respect to the Galois group, i.e.,

$$v_{\theta^k} = \sigma^k(v_1)$$

for generators θ and σ of $(\mathbb{Z}/d\mathbb{Z})^{\times}$ and the Galois group, resp.

ullet for a permutation symmetry of order 3ℓ , we need only $m=\frac{d-1}{3\ell}$ numbers

dream:

find a *direct* way to determine the algebraic number v_1 , as well as σ and θ

Prime Dimensions $p = n^2 + 3$

[Appleby, Bengtsson, Grassl, Harrison, McConnell, "SIC-POVMs from Stark Units"]

Conjecture:

• for prime dimensions $p = n^2 + 3$ (n > 0), there is an almost flat fiducial vector \boldsymbol{v} with

$$v_j = \begin{cases} -2 - \sqrt{d+1} & j = 0\\ \sqrt{v_0 e^{i\vartheta_j}} & j > 0 \end{cases}$$

- ullet the components of $m{v}$ generate a "small" ray class field $\mathbb{K}^{\mathfrak{m}}$ with finite modulus $\sqrt{d+1}\pm 1$ and ramification at one infinite place
- the phases $e^{i\vartheta_j}$ are Galois conjugates of (real) *Stark units* for the ray class field $\mathbb{K}^{\mathfrak{m}}$

Application of Stark's Conjectures

- for certain ray class fields $\mathbb{K}^{\mathfrak{m}}$ over the real quadratic field $\mathbb{K}=\mathbb{Q}(\sqrt{D})$, D>0, one can compute numerical approximations of *Stark units* ϵ_{σ} via special values of derivatives of L-functions
- the Stark units are labelled by elements σ of the Galois group $\mathrm{Gal}(\mathbb{K}^{\mathfrak{m}}/\mathbb{K})$ such that $\epsilon_{\sigma} = \sigma(\epsilon_{0})$
- ullet from numerical Stark units with sufficiently high precision, we can deduce their exact minimal polynomial over $\mathbb K$
- we have a heuristic that allows us to deduce the required precision from numerical Stark units with low precision
- the complexity of the calculation appears to be roughly $\mathcal{O}\left(\deg(\mathbb{K}^{\mathfrak{m}}/\mathbb{K})\times(\#\mathsf{digits})^{3.3}\right)$

Runtime *L*-Functions

total CPU time to compute the numerical derivative of L-functions using Magma and PARI/GP (last three cases)

d	$\deg(\mathbb{K}^{\mathfrak{m}}/\mathbb{K})$	log height	precision	CPU time
487	324	424	1000 digits	$251~{ m hours}$
787	262	299	$1000~\mathrm{digits}$	118 hours
2707	902	1861	$3800~\mathrm{digits}$	900 days
4099	1366	974	$2000~\mathrm{digits}$	170 days
5779	214	127	$300~\mathrm{digits}$	18 min
1447	964	2158	$4600~\mathrm{digits}$	111 days
19603	2178	1754	$4000~\mathrm{digits}$	82 days
2503	3336	6464	$13000 \; \mathrm{digits}$	60.5 years

Flipping the Sign

- ullet real quadratic field $\mathbb{K}=\mathbb{Q}(\sqrt{D})$ with non-trivial automorphism $\tau \colon \sqrt{D} \mapsto -\sqrt{D}$
- embedding $j: \mathbb{K} \hookrightarrow \mathbb{R}, j(\sqrt{D}) > 0, j^{\tau}(\sqrt{D}) = j((\sqrt{D})^{\tau}) < 0$
 - "real" Stark units ϵ_{σ} : $\mathfrak{j}(\epsilon_{\sigma}) > 0$
 - "complex" Stark units ϵ_{σ}^{τ} : $\mathfrak{j}(\epsilon_{\sigma}^{\tau}) = \mathfrak{j}^{\tau}(\epsilon_{\sigma}) \in \mathbb{C} \setminus \mathbb{R}$
- minimal polynomial of ϵ_{σ} : $p_1(t) \in \mathbb{K}[t]$ \implies minimal polynomial of ϵ_{σ}^{τ} : $p_2(t) = p_1^{\tau}(t)$
- obstacle: operation of σ on ϵ_0^{τ} would require factoring $p_2(t)$

for simplicity, we assume in the following class number h=1, i.e., $H_{\mathbb K}={\mathbb K}$

The Galois Polynomial

- fixing some labelling, we know how σ permutes the m (numerical) Stark units ϵ_j : $\sigma(\epsilon_j) = \sigma_{\pi_{\sigma}(j)}$ for some permutation π_{σ}
- ullet there exists a unique polynomial g_1 of degree at most m-1 such that

$$g_1(\epsilon_j) = \epsilon_{\pi_{\sigma}(j)} \qquad \text{for } j = 1, \dots, m$$
 (1)

- using Newton interpolation, g_1 can be computed with $\mathcal{O}(m^2)$ arithmetic operations ($\mathcal{O}(m(\log m)^2)$) when using FFT-based methods)
- the coefficients of g_1 are in \mathbb{K} , as (1) is invariant wrt. $\operatorname{Gal}(\mathbb{K}^{\mathfrak{p}\mathfrak{j}^{\tau}}/\mathbb{K})$
- $g_2(t)=g_1^{\tau}(t)$ corresponds to the action of σ on ϵ_j^{τ} : $g_2(\epsilon_j^{\tau})=\epsilon_{\pi_{\sigma}(j)}^{\tau}$
- potential computational obstacle:

we don't know an *a priori* bound for the required precision (for d=19603, the coefficients have more than 1 million digits)

Solving the Sign Problem

Recall: We conjecture that the components of the fiducial vector are square roots of Galois conjugates of Stark units, i.e., $v_{\theta^k} = \sqrt{v_0 \sigma^k(\epsilon_0^{\tau})}$.

Problem: there are two square roots $\pm \sqrt{v_0 \sigma^k(\epsilon_0^{ au})}$

Solution:

 \bullet it turns out that polynomial $p_2(t^2/v_0)$ with $v_0=-2-\sqrt{d+1}$ factors in $\mathbb{K}[t]$ as

$$v_0^m p_2(t^2/v_0) = p_4(t)p_4(-t)$$

- pick the factor $p_4(t)$ and check which of the square roots is a root of $p_4(t)$
- we are left with a global sign ambiguity, i.e., two possibilities
- note: it does not matter which of the Galois conjugates of the Stark units is assigned to ϵ_0^{τ} ; all choices yield eventually fiducial vectors

Final Step: Combinatorial Search

so far, we have

- exact minimal polynomials $p_1(t), p_2(t), p_4(t) \in \mathbb{K}[t]$ and exact Galois polynomials $g_1(t), g_2(t) \in \mathbb{K}[t]$
- numerical square roots $\sqrt{v_0\epsilon_j^{\tau}}$ (up to a global sign) together with the permutation action of the (cyclic) Galois group $\mathrm{Gal}(\mathbb{K}^{\mathfrak{m}}/H_{\mathbb{K}})$ on them

final step:

- we have to identify which primitive element $\theta \in (\mathbb{Z}/d\mathbb{Z})^{\times}$ corresponds to the action of σ
- we have to fix the global sign (we can choose the sign of the first coordinate)
- compute a (numerical) vector \boldsymbol{v} for all choices (less than d) and test the overlap $|\langle \boldsymbol{v}|X|\boldsymbol{v}\rangle|^2/||\boldsymbol{v}||^4\stackrel{?}{=}\frac{1}{d+1}$
- ullet we know that $\sigma^{m/2}$ corresponds to complex conjugation

Exact Solution

We can also compute an exact representation of the fiducial vector without explicit factorisation in the extension field:

- define the field $\mathbb{L} = H_{\mathbb{K}}(\gamma)$ with $p_4(\gamma) = 0$
- compute the exact Galois polynomial $g_4(t) \in H_{\mathbb{K}}[t]$ from the numerical values $\sqrt{v_0\epsilon_\sigma^\tau}$
- the action of the Galois automorphism σ on \mathbb{L} is defined by $\sigma \colon \gamma \mapsto g_4(\gamma)$
- we can compute the components of the fiducial vector using

$$v_0 = \pm (2 + \sqrt{d+1}), \qquad v_1 = \gamma, \qquad \text{and } v_{\theta j} = g_4(v_j) \text{ for } j > 0$$

computational obstacles: missing an *a priori* bound on the precision to compute the exact Galois polynomial $p_4(t)$ and arithmetic in the field \mathbb{L} is slow when the degree is large (use tower of subfields if possible)

Verification of the Solution

second frame potential for a fiducial vector

$$f(|\psi\rangle) = \sum_{j,k=1}^{d} \left| \sum_{\ell=1}^{d} \overline{\psi}_{j+\ell} \, \psi_{\ell} \, \overline{\psi}_{k+\ell} \, \psi_{j+k+\ell} \right|^{2} = \frac{2}{d+1}$$

$$=:G(j,k)$$

- moreover $G(j,k) = \frac{\delta_{j,0} + \delta_{k,0}}{d+1}$
- G(j,k) has an eightfold symmetry
- we don't need *d*-th roots of unity
- ullet $\mathcal{O}(d^3)$ arithmetic operations

verifying the solution takes longer than computing it

Runtime Verification

CPU time for the exact/numerical verification of the solution

d	$\deg(\mathbb{K}^{\mathfrak{m}}/\mathbb{K})$	precision	CPU time	G(j,k)
103	$2^2 \times 17$	exact	440 s	1.3 s
199	2×11	exact	310 s	0.3~s
487	$2^2 \times 3^4$	exact	31~days	315 s
787	2×131	10000 digits	3 hours	$65~{\sf min}$
1447	$2^2 \times 241$	10000 digits	17.0 hours	
2707	$2 \times 11 \times 41$	2000 digits	$11.2 \; hours$	
4099	2×683	2000 digits	$36.5 \; hours$	
5779	2×107	2000 digits	100 hours	88 min
19603	$2 \times 3^2 \times 11^2$	1000 digits	1367 days	
39604	$2^2 \times 3^2 \times 5^2$	100 digits	$684~\mathrm{days}$	pprox 28 days

Solutions for $d = n^2 + 3$

- ullet the method can be generalised to composite dimensions $d=n^2+3$
- even dimensions $d=n^2+3$ are divisible by 4, but not by 8; almost flat fiducial vector after change of basis
- for composite dimensions, one has to compute Stark units for certain subfields as well
- ullet there are more possibilities to match the action of $(\mathbb{Z}/d\mathbb{Z})^{\times}$ and the action of the Galois group

so far, our method has been successfully applied in 34 dimensions:

 $d=7,12,19,28,39,52,67,84,103,124,147,172,199,259,292,327,403,487,\\628,787,844,964,1027,1228,1299,1447,1684,1852,2404,2707,4099,5779,\\19603, and <math>39604$

Conclusions & Outlook

- deterministic procedure to compute SIC-POVMs from Stark units
- successfully applied in 34 dimensions $d=n^2+3$; did not fail in any
- can we obtain a fiducial vector directly from the *real* Stark units, without "flipping the sign"?
- can we work with lower precision?
- can we avoid the combinatorial search in the final step?
- assuming Stark's conjectures to be true, can be prove that our construction always works?
- can we extend the method to other dimensions?

forthcoming publication:

Marcus Appleby, Ingemar Bengtsson, Markus Grassl, Michael Harrison, Gary McConnell, "SIC-POVMs from Stark Units"

Thank you! Danke! Merci! Dziekuje!

Acknowledgments

The 'International Centre for Theory of Quantum Technologies' project (contract no. 2018/MAB/5) is carried out within the International Research Agendas Programme of the Foundation for Polish Science co-financed by the European Union from the funds of the Smart Growth Operational Programme, axis IV: Increasing the research potential (Measure 4.3).

Additional computing resources were provided via MPL

