## Instability of Quantum Tomography with Bounded Operators

Chris Dock, joint work with Radu V. Balan

Tufts University

christopher.dock@tufts.edu

August 1, 2023

< □ > < 同 >

## Quantum Computing and Meaurement

2

## Quantum Computing

QCs aim to revolutionize physics simulation and potentially our lives, if we can only glean their answers!



Figure: A model of IBM's 127 qbit computer. https://www.nytimes.com/2023/06/14/science/ibm-quantum-computing.html

Chris Dock, joint work with Radu V. Balan (UMD)

< □ > < □ > < □ > < □ > < □ >

#### Definition (The Dirac-von Neumann axioms for a quantum system)

The space H is a  $\mathbb{C}$ -Hilbert space of finite or countably infinite dimension.

- The set of observables a quantum system is the set of self-adjoint operators on H
- **(a)** A quantum state is a unit vector  $\psi$  in  $\hat{H} = H/U(1)$ , equivalently a ray of  $\hat{H}$ .
- The expectation of an observable A when the system is in state  $\psi$  is

$$\mathbb{E}_{\psi}[\mathbf{A}] \equiv \langle \psi, \mathbf{A}\psi \rangle$$

3/21

#### Definition (The Dirac-von Neumann axioms for a quantum system)

The space H is a  $\mathbb{C}$ -Hilbert space of finite or countably infinite dimension.

- The set of observables a quantum system is the set of self-adjoint operators on H
- **(a)** A quantum state is a unit vector  $\psi$  in  $\hat{H} = H/U(1)$ , equivalently a ray of  $\hat{H}$ .
- The expectation of an observable A when the system is in state  $\psi$  is

$$\mathbb{E}_{\psi}[A] \equiv \langle \psi, A\psi \rangle$$

Example: 
$$H = \mathbb{C}^2$$
.  $A = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ .  $\psi = c_1 \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} + c_2 \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix}$ .  
 $\mathbb{E}_{\psi}[A] = |c_1|^2 \frac{\hbar}{2} + |c_2|^2 \frac{-\hbar}{2}$ 

#### Definition (The Dirac-von Neumann axioms for a quantum system)

The space H is a  $\mathbb{C}$ -Hilbert space of finite or countably infinite dimension.

- The set of observables a quantum system is the set of self-adjoint operators on H
- **(a)** A quantum state is a unit vector  $\psi$  in  $\hat{H} = H/U(1)$ , equivalently a ray of  $\hat{H}$ .
- The expectation of an observable A when the system is in state  $\psi$  is

$$\mathbb{E}_{\psi}[A] \equiv \langle \psi, A\psi \rangle$$

**Example:** 
$$H = \mathbb{C}^2$$
.  $A = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ .  $\psi = c_1 \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} + c_2 \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix}$ 

$$\mathbb{E}_{\psi}[A] = |c_1|^2 \frac{\hbar}{2} + |c_2|^2 \frac{-\hbar}{2}$$

**Remark:** (*iii*) induces a probability measure on  $\sigma(A)$ . Here  $\sigma(A) = \{\frac{\hbar}{2}, \frac{-\hbar}{2}\}$  and  $P_{\psi}(\hbar/2) = |c_1|^2 = |\langle \psi, e_1 \rangle|^2$  and  $P_{\psi}(-\hbar/2) = |c_2|^2 = |\langle \psi, e_2 \rangle|^2$ .

#### Definition (The Dirac-von Neumann axioms for a quantum system)

The space H is a  $\mathbb{C}$ -Hilbert space of finite or countably infinite dimension.

- The set of observables a quantum system is the set of self-adjoint operators on H
- **(4)** A quantum state is a unit vector  $\psi$  in  $\hat{H} = H/U(1)$ , equivalently a ray of  $\hat{H}$ .
- The expectation of an observable A when the system is in state  $\psi$  is

$$\mathbb{E}_{\psi}[\mathbf{A}] \equiv \langle \psi, \mathbf{A}\psi \rangle$$

**Remark:** The dimension of H (the number of output qbits) is likely to grow rapidly as QCs improve, motivating study of the infinite dimensional case.

#### Definition (The Dirac-von Neumann axioms for a quantum system)

The space H is a  $\mathbb{C}$ -Hilbert space of finite or countably infinite dimension.

- The set of observables a quantum system is the set of self-adjoint operators on H
- **(4)** A quantum state is a unit vector  $\psi$  in  $\hat{H} = H/U(1)$ , equivalently a ray of  $\hat{H}$ .
- The expectation of an observable A when the system is in state  $\psi$  is

$$\mathbb{E}_{\psi}[A] \equiv \langle \psi, A\psi \rangle$$

**Remark:** The dimension of H (the number of output qbits) is likely to grow rapidly as QCs improve, motivating study of the infinite dimensional case.

**Remark:** We should not expect to have access to the exact value of  $\mathbb{E}_{\psi}[A]$ , since in general there will be measurement noise and we are only capable of taking finitely many measurements.

Given  $\psi \in \hat{H}$  we can compute the statistics of observables  $\mathcal{A} = \{A_j\}_{j \in I}$ . Commonly, we need to do the opposite:

#### Problem (Quantum Tomography)

Given measurements of A, can we deduce  $\psi \in \hat{H}$ ?

#### **Applications:**

- Reading the output of a quantum computer.
- Ocharacterizing the gain/loss of optical devices.

Given  $\psi \in \hat{H}$  we can compute the statistics of observables  $\mathcal{A} = \{A_j\}_{j \in I}$ . Commonly, we need to do the opposite:

#### Problem (Quantum Tomography)

Given measurements of A, can we deduce  $\psi \in \hat{H}$ ?

We will impose on our observables the restriction redundancy(A)  $< \infty$  where:

$$\begin{aligned} \mathsf{redundancy}(\mathcal{A}) &:= \inf\{B > 0 : \sum_{j \in I} \langle v, |A_j|v \rangle \le B ||v||^2 \qquad \forall v \in H\} \\ &= \sup_{v \neq 0} \frac{1}{||v||^2} \sum_{i \in I} \langle v, |A_j|v \rangle \end{aligned}$$

In particular, this implies that each  $A_j$  is bounded.

redundancy(A) is a measure of how much overlapping information there is across the various observables of A.

Chris Dock, joint work with Radu V. Balan (UMD)

4 / 21

Given  $\psi \in \hat{H}$  we can compute the statistics of observables  $\mathcal{A} = \{A_j\}_{j \in I}$ . Commonly, we need to do the opposite:

#### Problem (Quantum Tomography)

Given measurements of A, can we deduce  $\psi \in \hat{H}$ ?

Remark: The redundancy inequality

$$\sum_{j \in I} \langle v, |A_j|v \rangle \le B ||v||^2 \qquad \forall v \in H$$

means the frame operator series  $S = \sum_{j \in I} A_j$  converges absolutely in the strong operator topology.

(日) (同) (日) (日)

Given  $\psi \in \hat{H}$  we can compute the statistics of observables  $\mathcal{A} = \{A_j\}_{j \in I}$ . Commonly, we need to do the opposite:

#### Problem (Quantum Tomography)

Given measurements of A, can we deduce  $\psi \in \hat{H}$ ?

**Example:** Suppose  $\mathcal{A}$  are compact and commuting  $\implies A_j = \sum_{i \ge 1} \lambda_{ij} e_i e_i^*$ . Then if  $\psi$  is a state with coefficients  $\psi_i = \langle e_i, \psi \rangle$ :

$$\sum_{j\geq 1} \langle \psi, |A_j|\psi \rangle = \sum_{j\geq 1} \mathbb{E}_{\psi}[|A_j|] = \sum_{i,j\geq 1} |\lambda_{ij}||\psi_i|^2 = \sum_i |\psi_i|^2 \sum_{j\geq 1} |\lambda_{ij}|$$

Meanwhile  $\sum_{i>1} |\psi_i|^2 = 1$ , so if B is finite one must have

$$\sup_{i\geq 0}\sum_{j\geq 0}|\lambda_{ij}|<\infty$$

E.g. the "mass" of an eigvec must be finite across  $\mathcal{A}$ .

포 🛌 포

Given  $\psi \in \hat{H}$  we can compute the statistics of observables  $\mathcal{A} = \{A_j\}_{j \in I}$ . Commonly, we need to do the opposite:

#### Problem (Quantum Tomography)

Given measurements of A, can we deduce  $\psi \in \hat{H}$ ?

Let  $\beta_{\mathcal{A}}: \hat{H} \rightarrow \ell^1(I)$  be

$$(\beta_{\mathcal{A}}(\psi))_j = \mathbb{E}_{\psi}[A_j] = \langle \psi, A_j \psi \rangle \qquad j \in I$$

Fix  $\epsilon > 0$ . Under some technical requirements on  $\mathcal{A}$ , if one has M repeated observations of  $\mathcal{A}$  then the sample mean  $y \in \ell^1(I)$  will satisfy

 $P(||y - eta_{\mathcal{A}}(\psi)||_1 > \epsilon) \leq rac{C}{M\epsilon^2}$  (Banach Space Chebyshev-Inequality)

 $\implies$  Would like  $\beta_{\mathcal{A}}$  to be **injective** and **lower-Lipschitz** to retrieve  $\psi \in \hat{H}$ 

イロト イヨト イヨト

### Lipschitz stability and previous work

Chris Dock, joint work with Radu V. Balan (UMD)

Instability of Quantum Tomography

August 1, 2023

æ

5/21

### Stable reconstruction and Kirzbraun's theorem

Suppose  $\beta_{\mathcal{A}} : (\hat{H}, d) \to (\beta_{\mathcal{A}}(\hat{H}), || \cdot ||_{\ell_2})$  is  $\ell$ -lower-Lipschitz:

$$0 < \ell = \inf_{\substack{x,y \in H \\ [x] \neq [y]}} \frac{||\beta_{\mathcal{A}}(x) - \beta_{\mathcal{A}}(y)||_2}{d(x,y)}$$

Then **Kirzbraun's Theorem** provides  $\omega : \ell^2(I) \to H$ , a  $1/\ell$ -Lipschitz extension of  $\beta^{-1} : \beta(\hat{H}) \to \hat{H}$ . If additionally  $d([x], [y]) \le b||x - y||$  then

$$\implies P(||y - \beta(\psi)||_1 > \epsilon) \le \frac{C}{M\epsilon^2} \text{ implies } P(d(\psi, \omega(y)) > \frac{b\epsilon}{\ell}) \le \frac{C}{M\epsilon^2} !$$

6/21

## Stable reconstruction and Kirzbraun's theorem

Suppose  $\beta_{\mathcal{A}} : (\hat{H}, d) \to (\beta_{\mathcal{A}}(\hat{H}), || \cdot ||_{\ell_2})$  is  $\ell$ -lower-Lipschitz:

$$0 < \ell = \inf_{\substack{x,y \in H \\ [x] \neq [y]}} \frac{||\beta_{\mathcal{A}}(x) - \beta_{\mathcal{A}}(y)||_2}{d(x,y)}$$

Then **Kirzbraun's Theorem** provides  $\omega : \ell^2(I) \to H$ , a  $1/\ell$ -Lipschitz extension of  $\beta^{-1} : \beta(\hat{H}) \to \hat{H}$ . If additionally  $d([x], [y]) \le b||x - y||$  then

$$\implies P(||y - \beta(\psi)||_1 > \epsilon) \leq \frac{C}{M\epsilon^2} \text{ implies } P(d(\psi, \omega(y)) > \frac{b\epsilon}{\ell}) \leq \frac{C}{M\epsilon^2} \texttt{ !}$$

Theorem (Kirzbraun's Lipschitz Extension Theorem)

Let  $H_1$ ,  $H_2$  be Hilbert spaces and let  $U \subset H_1$ . If  $f : U \to H_2$  is an L-Lipschitz function then there is an L-Lipschitz function  $\omega : H_1 \to H_2$  such that  $\omega|_U = f$ .

**Remark:** In general Kirzbraun requires the axiom of choice, but if  $H_1$  and  $H_2$  are separable then  $\omega$  is constructible.

**Remark:** Here  $H_2 = I^2(I) \supset \beta_{\mathcal{A}}(\hat{H})$ .

< □ > < 同 > < 回 > < Ξ > < Ξ

### Stable reconstruction and Kirzbraun's theorem



Here  $\beta_{\mathcal{A}}$  is  $\ell$  lower Lipschitz implies  $P(d(\psi, \omega(y)) > \frac{b\epsilon}{\ell}) \leq \frac{C}{M\epsilon^2}$ 

## Lower-Lipschitz w.r.t what?

One natural choice of metric on  $\hat{H}$  is that induced by the embedding of  $\hat{H}$  into Sym(H) via  $x \mapsto xx^*$ :

#### Definition (Embedding Metrics)

The family of embedding metrics  $d_p: \hat{H} \times \hat{H} \to \mathbb{R}$  are defined for  $p \in [1, \infty]$  by

$$d_p(x,y) = ||xx^* - yy^*||_p$$

Where  $|| \cdot ||_p$  denotes the *p*th Schatten norm.

We will take p = 1, yielding the (squared) lower Lipschitz constant

$$\mathsf{a}_0 = \inf_{\substack{x,y \in H \\ [x] \neq [y]}} \frac{||\beta_{\mathcal{A}}(x) - \beta_{\mathcal{A}}(y)||_2^2}{||xx^* - yy^*||_1^2}$$

7/21

### Lower-Lipschitz w.r.t what?

A second natural choice is the quotient metric on  $\hat{H}$ :

Definition (Quotient Metric)

Define  $D: \hat{H} imes \hat{H} 
ightarrow \mathbb{R}$  via

$$D(x,y) = \min_{\theta \in [0,2\pi)} ||x - ye^{i\theta}y||$$

Because  $\beta_{\mathcal{A}}(\lambda x) = |\lambda|^2 \beta_{\mathcal{A}}(x)$  whereas  $D(\lambda x, \lambda y) = |\lambda|D(x, y)$  one defines  $\alpha_{\mathcal{A}} = \beta^{\odot \frac{1}{2}}$  and analyzes

$$A_0 = \inf_{\substack{x,y \in H \\ [x] \neq [y]}} \frac{||\alpha_{\mathcal{A}}(x) - \alpha_{\mathcal{A}}(y)||_2^2}{D(x,y)^2}$$

イロト イポト イヨト イヨト

## Known results

The case of  $A_j = f_j f_j^*$  rank-one positive semi-definite is understood:

**Case I:**  $H \simeq \mathbb{C}^n$  is finite dimensional.

#### Theorem (Balan and Zou 2016 [1])

Let  $\mathcal{F} = \{f_j\}_{j=1}^m \subset \mathbb{C}^n$  such that  $\beta_{\mathcal{F}}$  is injective. Then  $\beta_{\mathcal{F}}$  is  $\sqrt{a_0}$ -lower-Lipschitz where:

Define 
$$\mathcal{R} : \mathbb{R}^{2n} \to Sym(\mathbb{R}^{2n})$$
 via  $\mathcal{R}(\xi) = \sum_{j=1}^{m} \Phi_j \xi \xi^T \Phi_j$  where  
 $\Phi_j = \phi_j \phi_j^T + J \phi_j \phi_j^T J^T$ ,  $\phi_j = \begin{bmatrix} \Re f_j \\ \Im f_j \end{bmatrix}$  and J is the symplectic form  $\begin{bmatrix} 0 & -\mathbb{I} \\ \mathbb{I} & 0 \end{bmatrix}$ .

$$a_{0} = \inf_{\substack{x, y \in \mathbb{C}^{n} \\ xx^{*} \neq yy^{*}}} \frac{||\beta(x) - \beta(y)||_{2}^{2}}{||xx^{*} - yy^{*}||_{1}^{2}} = \min_{\substack{\xi \in \mathbb{R}^{2n} \\ ||\xi||_{2} = 1}} \lambda_{2n-1}(\mathcal{R}(\xi)) > 0$$
(1)

**TLDR:** If  $\beta$  is injective it is **automatically** lower-Lipschitz.

(日)

8/21

æ

## Known results

The case of  $A_j = f_j f_j^*$  rank-one positive semi-definite is understood:

**Case II:**  $H \simeq \ell^2(\mathbb{N})$  is infinite dimensional.

#### Theorem (Cahill, Casazza, Daubechies 2016 [2])

Suppose  $\mathcal{F} = \{f_j\}_{j\geq 1}$  has an upper frame bound for the infinite dimensional Hilbert space H and is such that  $c := \inf_{j\geq 0} ||f_j||_2 > 0$  and such that  $\alpha_{\mathcal{F}}$  is injective. Then for every  $\delta > 0$  there exists  $v_1, v_2 \in H$  such that  $\min_{\theta \in [0,2\pi)} ||v_1 - e^{i\theta}v_2|| \geq 1$  and  $||\alpha_{\mathcal{F}}(v_1) - \alpha_{\mathcal{F}}(v_2)||_{l^2(I)} < \delta$ .

Here  $\alpha_F = \beta_F^{\odot \frac{1}{2}}$  and the quotient metric  $D(x, y) = \min_{\theta \in [0, 2\pi)} ||x - e^{i\theta}y||_2$  is used instead of  $d_1$ .

**Corollary:** The theorem holds under  $\alpha_F \leftrightarrow \beta_F$  and  $D \leftrightarrow d_1$ , i.e.  $a_0 = 0$ .

**TLDR:** If  $\mathcal{F}$  has an upper frame bound and uniformly lower-bounded norms then  $\beta_{\mathcal{F}}$  injective is **never** lower-Lipschitz.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

### Injectivity implies stability for $H = \mathbb{C}^n$

The Balan and Zou result readily extends to arbitrary observables. An easy topological proof that  $\beta_A$  injective  $\implies a_0 > 0$  is:

$$0 = a_0 := \inf_{\substack{x, y \in \mathbb{C}^n \\ [x] \neq [y]}} \frac{\sum_{j=1}^m |\langle x, A_j x \rangle - \langle y, A_j y \rangle|^2}{||xx^* - yy^*||_1^2}$$
$$= \inf_{\substack{x, y \in \mathbb{C}^n \\ [x] \neq [y]}} \frac{\sum_{j=1}^m |\langle A_j, xx^* - yy^* \rangle|^2}{||xx^* - yy^*||_1^2}$$
$$= \inf_{\substack{W \in \Delta \\ ||W||_1 = 1}} \sum_{j=1}^m |\langle A_j, W \rangle|$$

Here  $\Delta = \{X \in \mathbb{C}^{n \times n} : \mathsf{rank}(X^+) \le 1, \mathsf{rank}(X^-) \le 1\}.$ 

## Injectivity implies stability for $H = \mathbb{C}^n$

The Balan and Zou result readily extends to arbitrary observables. An easy topological proof that  $\beta_A$  injective  $\implies a_0 > 0$  is:

$$0 = a_{0} := \inf_{\substack{x, y \in \mathbb{C}^{n} \\ [x] \neq [y]}} \frac{\sum_{j=1}^{m} |\langle x, A_{j}x \rangle - \langle y, A_{j}y \rangle|^{2}}{||xx^{*} - yy^{*}||_{1}^{2}}$$
$$= \inf_{\substack{x, y \in \mathbb{C}^{n} \\ [x] \neq [y]}} \frac{\sum_{j=1}^{m} |\langle A_{j}, xx^{*} - yy^{*} \rangle|^{2}}{||xx^{*} - yy^{*}||_{1}^{2}}$$
$$= \inf_{\substack{W \in \Delta \\ ||W||_{1}=1}} \sum_{j=1}^{m} |\langle A_{j}, W \rangle|$$

Here  $\Delta = \{X \in \mathbb{C}^{n \times n} : \mathsf{rank}(X^+) \le 1, \mathsf{rank}(X^-) \le 1\}$ . For  $||B||_2$  sufficiently

small  $rank(A + B) \ge rank(A) \implies \Delta$  is closed.

 $\implies \Delta \cap B_1(0,1) \text{ is compact } \implies \exists W = xx^* - yy^* \text{ with } ||W||_1 = 1 \text{ s.t.}$  $\sum_{j=1}^m |\langle A_j, W \rangle|^2 = 0$  $\implies \beta_{\mathcal{A}} \text{ is not injective.}$ 

## Extending Cahill, Casazza, Daubechies

Chris Dock, joint work with Radu V. Balan (UMD)

Instability of Quantum Tomography

August 1, 2023

10/21

æ

## TLDRFWT (TLDR For Whole Talk)

We'll prove the following strengthening of the Daubechies, Cahill, Casazza result:

#### Theorem

Let H be a separable infinite dimensional Hilbert space and let  $\mathcal{A} = \{A_j\}_{j \ge 1} \subset B(H)$  have redundancy $(\mathcal{A}) < \infty$ . Then for all  $\delta > 0$  there exist  $w_1, w_2 \in H$  such that

 $||w_1w_1^* - w_2w_2^*||_1 \geq 1 \qquad \text{and} \qquad ||\beta_\mathcal{A}(w_1) - \beta_\mathcal{A}(w_2)||_1 < \delta$ 

In particular, such a collection A never does stable quantum tomography.

**TLDRFWT (TLDR For Whole Talk):** No collection of bounded observables with finite redundancy permits stable quantum tomography globally on an infinite dimensional Hilbert space.

イロト 不得 ト イヨト イヨト

# Extending the Cahill, Casazza, Daubechies result to finite rank observables

As might be expected, the instability result from Cahill, Casazza, Daubechies extends to A finite rank positive semi-definite:

#### Theorem

Suppose  $\mathcal{F} = \{f_j\}_{j \ge 1} \mathcal{A} = (A_j)_{j \ge 1}$  is finite rank and PSD and has an upper operator frame bound for the infinite dimensional Hilbert space H and such that  $c := \inf_{j \ge 0} \frac{||f_j||_2^2}{2} ||A_j||_{\infty} > 0$  and such that  $\alpha_{\mathcal{A}}$  is injective. Then for every  $\delta > 0$  there exists  $v_1, v_2 \in H$  such that  $\min_{\theta \in [0, 2\pi)} ||v_1 - e^{i\theta}v_2|| \ge 1$  and  $||\alpha_{\mathcal{A}}(v_1) - \alpha_{\mathcal{A}}(v_2)||_{\mathcal{P}(I)} < \delta$ .

< ロ > < 同 > < 回 > < 回 >

# Extending the Cahill, Casazza, Daubechies result to finite rank observables

As might be expected, the instability result from Cahill, Casazza, Daubechies extends to A finite rank positive semi-definite:

#### Theorem

Suppose  $\mathcal{F} = \{f_j\}_{j \ge 1} \mathcal{A} = (A_j)_{j \ge 1}$  is finite rank and PSD and has an upper operator frame bound for the infinite dimensional Hilbert space H and such that  $c := \inf_{j \ge 0} \frac{||f_j||_2^2}{2} ||A_j||_{\infty} > 0$  and such that  $\alpha_{\mathcal{A}}$  is injective. Then for every  $\delta > 0$  there exists  $v_1, v_2 \in H$  such that  $\min_{\theta \in [0, 2\pi)} ||v_1 - e^{i\theta}v_2|| \ge 1$  and  $||\alpha_{\mathcal{A}}(v_1) - \alpha_{\mathcal{A}}(v_2)||_{\mathcal{P}(I)} < \delta$ .

A collection of PSD observables  $\mathcal{A}$  is an **operator frame** if  $\exists A, B > 0 | \forall v \in H$ 

$$||v||^2 \leq \sum_{j \in I} \langle v, A_j v \rangle \leq B ||v||^2$$

**Remark:** The least upper operator frame bound is redundancy(A) since A is PSD.

One can bootstrap up to compact PSDs:

#### Theorem

Suppose  $\mathcal{F} = \{f_j\}_{j \ge 1} \mathcal{A} = (A_j)_{j \ge 1}$  is compact and PSD and has an upper operator frame bound for the infinite dimensional Hilbert space H and such that  $c := \inf_{j \ge 0} \frac{||f_j||_2^2}{2} ||A_j||_{\infty} > 0$  and such that  $\alpha_{\mathcal{A}}$  is injective. Then for every  $\delta > 0$  there exists  $v_1, v_2 \in H$  such that  $\min_{\theta \in [0, 2\pi)} ||v_1 - e^{i\theta}v_2|| \ge 1$  and  $||\alpha_{\mathcal{A}}(v_1) - \alpha_{\mathcal{A}}(v_2)||_{l^2(l)} < \delta$ .

13/21

• • • • • • • • • • • • • •

One can bootstrap up to compact PSDs:

#### Theorem

Suppose  $\mathcal{F} = \{f_j\}_{j \ge 1} \mathcal{A} = (A_j)_{j \ge 1}$  is compact and PSD and has an upper operator frame bound for the infinite dimensional Hilbert space H and such that  $c := \inf_{j \ge 0} \frac{||f_j||_2^2}{2} ||A_j||_{\infty} > 0$  and such that  $\alpha_{\mathcal{A}}$  is injective. Then for every  $\delta > 0$  there exists  $v_1, v_2 \in H$  such that  $\min_{\theta \in [0, 2\pi)} ||v_1 - e^{i\theta}v_2|| \ge 1$  and  $||\alpha_{\mathcal{A}}(v_1) - \alpha_{\mathcal{A}}(v_2)||_{\mathcal{P}(I)} < \delta$ .

Fix two sequences of positive reals  $(f_k)_{k\geq 1}$  with  $\lim_{k\to\infty} f_k = 0$  and  $(g_j)_{j\geq 1}$  summable. Let  $(r_{j,k})_{j,k\in\mathbb{N}} \subset \mathbb{N}$  be a double sequence such that

$$||A_j - (A_j)_{r_{j,k}}||_{\infty}^2 < f_k g_j$$

13/21

< ロ > < 同 > < 回 > < 回 >

One can bootstrap up to compact PSDs:

#### Theorem

Suppose  $\mathcal{F} = \{f_j\}_{j \ge 1} \mathcal{A} = (A_j)_{j \ge 1}$  is compact and PSD and has an upper operator frame bound for the infinite dimensional Hilbert space H and such that  $c := \inf_{j \ge 0} \frac{||f_j||_2^2}{2} ||A_j||_{\infty} > 0$  and such that  $\alpha_{\mathcal{A}}$  is injective. Then for every  $\delta > 0$  there exists  $v_1, v_2 \in H$  such that  $\min_{\theta \in [0, 2\pi)} ||v_1 - e^{i\theta}v_2|| \ge 1$  and  $||\alpha_{\mathcal{A}}(v_1) - \alpha_{\mathcal{A}}(v_2)||_{\mathcal{P}(I)} < \delta$ .

Fix two sequences of positive reals  $(f_k)_{k\geq 1}$  with  $\lim_{k\to\infty} f_k = 0$  and  $(g_j)_{j\geq 1}$  summable. Let  $(r_{j,k})_{j,k\in\mathbb{N}} \subset \mathbb{N}$  be a double sequence such that

$$||A_j - (A_j)_{r_{j,k}}||_{\infty}^2 < f_k g_j$$

By the finite rank case  $\exists (W_l^k)_{l\geq 1} \subset \Delta$  with  $||W_l^k||_1 \geq 1$  and

$$\lim_{I\to\infty}\sum_{j\geq 1}|\langle W_I^k,(A_j)_{r_{j,k}}\rangle|^2=0$$

< □ > < 同 > < 三 > < 三 >

Fix two sequences of positive reals  $(f_k)_{k\geq 1}$  with  $\lim_{k\to\infty} f_k = 0$  and  $(g_j)_{j\geq 1}$  summable. Let  $(r_{j,k})_{j,k\in\mathbb{N}} \subset \mathbb{N}$  be a double sequence such that

$$||A_j - (A_j)_{r_{j,k}}||_{\infty}^2 < f_k g_j$$

By the finite rank case  $\exists (W_l^k)_{l\geq 1} \subset \Delta$  with  $4\geq ||W_l^k||_1\geq 1$  and

$$\lim_{I\to\infty}\sum_{j\geq 1}|\langle W_{I}^{k},(A_{j})_{r_{j,k}}\rangle|^{2}=0$$

Fix two sequences of positive reals  $(f_k)_{k\geq 1}$  with  $\lim_{k\to\infty} f_k = 0$  and  $(g_j)_{j\geq 1}$  summable. Let  $(r_{j,k})_{j,k\in\mathbb{N}} \subset \mathbb{N}$  be a double sequence such that

$$||A_j - (A_j)_{r_{j,k}}||_{\infty}^2 < f_k g_j$$

By the finite rank case  $\exists (W_l^k)_{l\geq 1} \subset \Delta$  with  $4\geq ||W_l^k||_1\geq 1$  and

$$\lim_{I\to\infty}\sum_{j\geq 1}|\langle W_{I}^{k},(A_{j})_{r_{j,k}}\rangle|^{2}=0$$

Pass to a diagonal subsequence  $(W_{l_k}^k)_{k\geq 1}$  so that

$$\lim_{k\to\infty}\sum_{j\geq 1}|\langle W_{l_k}^k,(A_j)_{r_{j,k}}\rangle|^2=0$$

Thus we have a sequence  $(W_{l_k}^k)_{k\geq 1} \subset \Delta$  satisfying  $4 \geq ||W_l^k||_1 \geq 1$  and:

$$\lim_{k\to\infty}\sum_{j\geq 1}|\langle W_{l_k}^k,(A_j)_{r_{j,k}}\rangle|^2=0$$

We will show that  $(W_{l_k}^k)_{k\geq 1}$  gives the stability counter example:

$$\lim_{k \to \infty} \sum_{j \ge 1} |\langle W_{l_k}^k, A_j \rangle|^2 \le 2 \lim_{k \to \infty} \sum_{j \ge 1} |\langle W_{l_k}^k, (A_j)_{r_{j,k}} \rangle|^2 + \sum_{j \ge 1} |\langle W_{l_k}^k, A_j - (A_j)_{r_{j,k}} \rangle|^2$$

5/21

Thus we have a sequence  $(W_{l_k}^k)_{k\geq 1} \subset \Delta$  satisfying  $4 \geq ||W_l^k||_1 \geq 1$  and:

$$\lim_{k\to\infty}\sum_{j\geq 1}|\langle W_{l_k}^k,(A_j)_{r_{j,k}}\rangle|^2=0$$

We will show that  $(W_{l_k}^k)_{k\geq 1}$  gives the stability counter example:

$$\begin{split} \lim_{k \to \infty} \sum_{j \ge 1} |\langle W_{l_k}^k, A_j \rangle|^2 &\leq 2 \lim_{k \to \infty} \sum_{j \ge 1} |\langle W_{l_k}^k, (A_j)_{r_{j,k}} \rangle|^2 + \sum_{j \ge 1} |\langle W_{l_k}^k, A_j - (A_j)_{r_{j,k}} \rangle|^2 \\ &= 2 \lim_{k \to \infty} \sum_{j \ge 1} |\langle W_{l_k}^k, A_j - (A_j)_{r_{j,k}} \rangle|^2 \end{split}$$

5/21

Thus we have a sequence  $(W_{l_k}^k)_{k\geq 1} \subset \Delta$  satisfying  $4 \geq ||W_l^k||_1 \geq 1$  and:

$$\lim_{k\to\infty}\sum_{j\geq 1}|\langle W_{l_k}^k,(A_j)_{r_{j,k}}\rangle|^2=0$$

We will show that  $(W_{l_k}^k)_{k\geq 1}$  gives the stability counter example:

$$\begin{split} \lim_{k \to \infty} \sum_{j \ge 1} |\langle W_{l_k}^k, A_j \rangle|^2 &\leq 2 \lim_{k \to \infty} \sum_{j \ge 1} |\langle W_{l_k}^k, (A_j)_{r_{j,k}} \rangle|^2 + \sum_{j \ge 1} |\langle W_{l_k}^k, A_j - (A_j)_{r_{j,k}} \rangle|^2 \\ &= 2 \lim_{k \to \infty} \sum_{j \ge 1} |\langle W_{l_k}^k, A_j - (A_j)_{r_{j,k}} \rangle|^2 \\ &\leq 32 \lim_{k \to \infty} \sum_{j \ge 1} ||A_j - (A_j)_{r_{j,k}}||_{\infty}^2 \end{split}$$

Thus we have a sequence  $(W_{l_k}^k)_{k\geq 1} \subset \Delta$  satisfying  $4 \geq ||W_l^k||_1 \geq 1$  and:

$$\lim_{k\to\infty}\sum_{j\geq 1}|\langle W_{l_k}^k,(A_j)_{r_{j,k}}\rangle|^2=0$$

We will show that  $(W_{l_k}^k)_{k\geq 1}$  gives the stability counter example:

$$\begin{split} \lim_{k \to \infty} \sum_{j \ge 1} |\langle W_{l_k}^k, A_j \rangle|^2 &\leq 2 \lim_{k \to \infty} \sum_{j \ge 1} |\langle W_{l_k}^k, (A_j)_{r_{j,k}} \rangle|^2 + \sum_{j \ge 1} |\langle W_{l_k}^k, A_j - (A_j)_{r_{j,k}} \rangle|^2 \\ &= 2 \lim_{k \to \infty} \sum_{j \ge 1} |\langle W_{l_k}^k, A_j - (A_j)_{r_{j,k}} \rangle|^2 \\ &\leq 32 \lim_{k \to \infty} \sum_{j \ge 1} ||A_j - (A_j)_{r_{j,k}}||_{\infty}^2 \\ &\leq 32 \lim_{k \to \infty} f_k \sum g_j = 0 \end{split}$$

 $j \ge 1$ 

A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Thus  $(\mathcal{W}_{l_k}^k)_{k\geq 1}$  provides a sequence in  $\Delta$  such that  $||\mathcal{W}_k^k||_2\geq 1$  and

$$\lim_{k o\infty}\sum_{j\geq 1}|\langle W^k_{l_k},A_j
angle|^2=0$$

Thus  $(W_{l_k}^k)_{k\geq 1}$  provides a sequence in  $\Delta$  such that  $||W_k^k||_2\geq 1$  and

$$\lim_{k\to\infty}\sum_{j\geq 1}|\langle W_{l_k}^k,A_j\rangle|^2=0$$

If K is large enough that  $\sum_{j\geq 1} |\langle W_{l_K}^K, A_j\rangle|^2 < \delta^2$  and  $W_{l_K}^K = w_1w_1^* - w_2w_2^*$  then  $||w_1w_1^* - w_2w_2^*||_1 \geq 1$  and  $||\beta_{\mathcal{A}}(w_1) - \beta_{\mathcal{A}}(w_2)||_2 < \delta.$ 

16/21

## Bounded operators and a new, simple proof

Unfortunately that's as far as we can bootstrap (approximation of bdd operators in weak operator sense doesn't cut it). We found a new proof, however, of:

#### Theorem

Let H be a separable infinite dimensional Hilbert space and let  $\mathcal{A} = \{A_j\}_{j \ge 1} \subset B(H)$  have redundancy $(\mathcal{A}) < \infty$ . Then for all  $\delta > 0$  there exist  $w_1, w_2 \in H$  such that

 $||\textbf{w}_1\textbf{w}_1^* - \textbf{w}_2\textbf{w}_2^*||_1 \geq 1 \qquad \text{and} \qquad ||\beta_\mathcal{A}(\textbf{w}_1) - \beta_\mathcal{A}(\textbf{w}_2)||_1 < \delta$ 

In particular, such a collection  $\mathcal{A}$  never does stable quantum tomography.

**Remark:** We have removed the artificial requirement that  $\inf_{j\geq 1} ||A_j||_{\infty} > 0$ .

**Remark:** This theorem reduces to a strengthening of the previous in the case where A is compact and PSD.

(日)

3

Fix  $\delta > 0$  and fix  $v \in H$  as any unit vector. Find *m* such that

$$\sum_{j>m} \langle \mathbf{v}, |A_j|\mathbf{v}\rangle < \delta^2/(32B)$$

This is possible since redundancy(A) <  $\infty$ .

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Fix  $\delta > 0$  and fix  $v \in H$  as any unit vector. Find *m* such that

$$\sum_{j>m} \langle v, |A_j|v 
angle < \delta^2/(32B)$$

Then choose  $\psi \in \text{span}\{v, A_1v, \dots, A_mv\}^{\perp}$  and let  $w_1 = v + \psi$ ,  $w_2 = v - \psi$ .

Let  $A_j = A_j^+ - A_j^-$  where  $A_j^{\pm}$  are PSD with Cholesky factors  $B_j$  and  $C_j$  resp.

18/21

Fix  $\delta > 0$  and fix  $v \in H$  as any unit vector. Find *m* such that

$$\sum_{j>m} \langle \mathbf{v}, |A_j|\mathbf{v} 
angle < \delta^2/(32B)$$

Then choose  $\psi \in \text{span}\{v, A_1v, \dots, A_mv\}^{\perp}$  and let  $w_1 = v + \psi$ ,  $w_2 = v - \psi$ .

Let  $A_j = A_j^+ - A_j^-$  where  $A_j^\pm$  are PSD with Cholesky factors  $B_j$  and  $C_j$  resp.

$$||\beta_{\mathcal{A}}(w_1) - \beta_{\mathcal{A}}(w_2)||_1 = \sum_{j \ge 1} |\langle (v + \psi), A_j(v + \psi) \rangle - \langle (v - \psi), A_j(v - \psi) \rangle|$$

$$= 4 \sum_{j>m} |\Re \langle \mathbf{v}, A_j \psi \rangle|$$
  
$$\leq 4 \sum_{j>m} ||B_j^* \psi||_2 ||B_j^* \mathbf{v}||_2 + ||C_j^* \psi||_2 ||C_j^* \mathbf{v}||_2$$

18/21

Fix  $\delta > 0$  and fix  $v \in H$  as any unit vector. Find *m* such that

$$\sum_{j>m} \langle \mathbf{v}, |A_j|\mathbf{v} 
angle < \delta^2/(32B)$$

Then choose  $\psi \in \text{span}\{v, A_1v, \dots, A_mv\}^{\perp}$  and let  $w_1 = v + \psi$ ,  $w_2 = v - \psi$ .

Let  $A_j = A_j^+ - A_j^-$  where  $A_j^{\pm}$  are PSD with Cholesky factors  $B_j$  and  $C_j$  resp.

$$||eta_{\mathcal{A}}(w_1) - eta_{\mathcal{A}}(w_2)||_1 \le 4\sum_{j>m} ||B_j^*\psi||_2 ||B_j^*v||_2 + ||C_j^*\psi||_2 ||C_j^*v||_2$$

$$\leq 4 \sqrt{\sum_{j>m} \langle \psi, A_j^+ \psi \rangle} \sqrt{\sum_{j>m} \langle v, A_j^+ v \rangle} + 4 \sqrt{\sum_{j>m} \langle \psi, A_j^- \psi \rangle} \sqrt{\sum_{j>m} \langle v, A_j^- v \rangle} \\ \leq 4 \sqrt{B} \left( \sqrt{\sum_{j>m} \langle v, A_j^+ v \rangle} + \sqrt{\sum_{j>m} \langle v, A_j^- v \rangle} \right) \leq 4 \sqrt{2B} \sqrt{\sum_{j>m} \langle v, |A_j| v \rangle} < \delta$$

• • • • • • • • • • • • •

It remains to show  $||w_1w_1^* - w_2w_2^*||_1 \ge 1$ . Recall  $v \perp \psi$ .

$$||w_1w_1^* - w_2w_2^*||_1 \ge ||w_1w_1^* - w_2w_2^*||_2$$
  
= ||(v + \psi)(v + \psi) - (v - \psi)(v - \psi)^\*||\_2  
= 2||\psi v^\* + v\psi^\*||\_2 = 2\sqrt{2}

This concludes the proof of the theorem.

æ

It remains to show  $||w_1w_1^* - w_2w_2^*||_1 \ge 1$ . Recall  $v \perp \psi$ .

$$\begin{aligned} ||w_1w_1^* - w_2w_2^*||_1 &\geq ||w_1w_1^* - w_2w_2^*||_2 \\ &= ||(v + \psi)(v + \psi) - (v - \psi)(v - \psi)^*||_2 \\ &= 2||\psi v^* + v\psi^*||_2 = 2\sqrt{2} \end{aligned}$$

This concludes the proof of the theorem.

**Remark:** With minimal changes this theorem can be adapted to  $\beta_A \leftrightarrow \alpha_A$  and  $d_1 \leftrightarrow D$  (the measure of stability used in Cahill, Casazza, Daubechies).

#### Theorem

Let H be a separable infinite dimensional Hilbert space and let  $\mathcal{A} = \{A_j\}_{j \ge 1} \subset B(H)$  have B > 0 such that  $\sum_{j \ge 1} \langle v, |A_j|v \rangle \le B||v||^2$  for all  $v \in H$ . Then for  $\delta > 0$  there exist  $w_1, w_2 \in H$  such that

 $||w_1w_1^* - w_2w_2^*||_2 \geq 1 \qquad \text{and} \qquad ||\beta_\mathcal{A}(w_1) - \beta_\mathcal{A}(w_2)||_1 < \delta$ 

In particular, such a collection  $\mathcal{A}$  never does stable quantum tomography.

We wanted to understand and extend the Cahill, Casazza, Daubechies result in the context of quantum tomography:

**TLDRFWT (TLDR For Whole Talk):** No collection of bounded observables with finite redundancy permits stable quantum tomography globally on quantum states in an infinite dimensional Hilbert space.

**Future Work:** Two obvious question: What additional constraints on  $\psi \in \hat{H}$  would allow observables to be found allowing stable recovery? What about unbounded observables?

## Thank you!

#### References

Radu Balan and Dongmian Zou.

On lipschitz analysis and lipschitz synthesis for the phase retrieval problem. *Linear Algebra and its Applications*, 496:152–181, 2016.

Jameson Cahill, Peter Casazza, and Ingrid Daubechies. Phase retrieval in infinite-dimensional hilbert spaces.

*Transactions of the American Mathematical Society, Series B*, 3(3):63–76, 2016.