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1 Primitive Radicans

The computer revolution has brought awareness to the use of various bases
in representing integers. The standard for most number systems is decimal,
which is base 10, or has radix 10.1 The radix for binary is 2; for octal, 8; and
hexidecimal, 16.

An interesting case occurs when the radix 1 is considered. This construct is
in fact the simplest representation of integers and is commonly known as a tally
and is typically drawn in groups of 5 where the fifth stroke strikes through the
previous 4. The trouble with a tally is best seen with a little development of
the radices.

Definition 1.1 Given an integer r > 1, r is the radix of a non-negative integer
n, when n is expressed as the sequence a0, . . . , ak where 0 ≤ ai < r and

n = akrk + · · ·+ a2r
2 + a1r + a0.

The integers expressed with respect to the radix r will be denoted Nr and called a
primitive radican of r. The individual coefficients ai are called r-dits, or simply
radits when the r clear from the context.

Using induction and the division algorithum it is routine to show that this
representation is unique for any integer. The restriction that r be greater than
1 is required since 0 ≤ ai < 1 forces ai = 0 and clearly a sum of zeros will never
equal a non-zero integer. Likewise radix 0 or negative cause similar problems.
All hope is not lost though.

The difficulty when r = 1 is that with only one radit available for radix 1,
it is impossible to distinguish between the element that should play the role of
0 from the object that shoul play the role of 1. In effect this is the trivial ring
where multiplication is exactly addition. However the non-negative integers are
fully expressed in a tally so they should not be immediately excluded. In fact
the formal construction of the integers is similar to a tally, and so rightfully the
natural numbers in their abstract sense are defined as the tally.

1The use of the term base is more common than radix. However due to the use of the the
terms basis and bases later, base will be avoided in favor of radix. A number is expressed in
base 10, or 2, etc, while the radix of a string of numbers is 10, or 2, etc.
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Definition 1.2 N1 = N

Now Nr is defined for all radices in Z+. Next the N will be replaced with arbi-
trary subsets of numbers. This will allow for a generalization of the structures
in question. Later infinity will extend the primitive radicans by one more set.

Before moving on it is important to note several techniques exist to extend
the radix representation of a positive integer to its negative: simply fix a new
symbol (the minus sign) in front of the number, or for the case of more complex
systems, such as the p-adic integers, use infinite sequences. Most of these meth-
ods can be extended to the following construction but for simplicity negative
integers are ignored.

2 Radicans

Definition 2.1 An r-radican is any semigroup, isomorphic to a semigroup of
non-negative integers, expressed according to the radix r. That is, any semigroup
that can be embedded in a primitive radican.

A subradican of a radican is any subsemigroup expressed in the same radix.

Definition 2.2 A morphism γ : Ar → Bs is a function γ : Ar → Bs where

γ(a0, . . . , ak) = (γ(a0), . . . , γ(ak)).

[PENDING: determine if morphisms should be some type of homo-
morphism as well.]

In a sense a morphism is a change of radix. Notice that a morphism is fully
determined by how it maps the r-dits to the s-dits.

Proposition 2.3 Let O of all radicans be objects and define Mor(Ar, Bs) to be
all morphisms from the objects Ar to Bs. The collection R = 〈O,Mor(Ar, Bs)〉,
is a concrete category and is called the Radican Category.

Proposition 2.4 N1 is a zero – universal(initial) and co-universal(terminal) –
in R.

3 Universal Radicans

Applications typically demand the choice of a radix, but the theory in use rarely
requires a specific radix. The properties of the integers are true in any radix.
When the theorems allow, variables are substituted for specific numbers and
as such no radix is required. The basic properties then at play behind every
radix are those of an integral domain. Any theorem that makes use of these
properties can be safely transplanted into any radix. Before exploiting this idea
it will help to illustrate the concept with an example.
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Example 3.1 Every radix has a 0 and a 1 radit, so in each radix the expression
1111 = 11 · 101 is well formed. Of course for different radices this expression
refers to different integers, for instance in radix 2 the expression equates to
(expressed now in decimal): 15 = 3 · 5; radix 4: 85 = 5 · 17; and in radix 10
the expression does not change but would be read as one-thousand-one-hundred-
eleven equals eleven times one-hundred-one.

Likewise every radix r has an element r−1 akin to the digit 9 in decimal, in
that 9 + 1 = 10, the situatation when r = 2 will be explained in a moment. So
give r−1 a special label 99.2 Now using this simple the expression 1001 = 11 ·991
also is admitted in every radix. Again the context determines which integers are
being refered to so once again in decimal: radix 2 specificies 9 = 3 · 3; radix 4
states 65 = 5 · 13; and finally radix 10 states 1, 001 = 11 · 91. Notice when the
radix was 2 the symbol 99 was read as 1, since 1 is both the one and the nine in
radix 2.

The symbols 0, 1 and 99 can be admited to any radix. However even with
99 there is little room left to accomdate N2. Extending the character set no
longer allows for the simple tranformation of sentences into any given radix.
The following definition sums up the condition.

Definition 3.2 A string of characters from the set U = {0, 1, 99} is called a
universal formula/string. The set of all universal formulas is denoted by N∞.

Proposition 3.3 N∞ is a primitive radican. (Largely definitional.)

Definition 3.4 The universal mapping Υr from N∞ to Nr is given by:

Υr(0) = 0 Υr(1) = 1 Υr(99) = (r − 1).

Proposition 3.5 N∞ is universal(initial) in R.

Proposition 3.6 N∞ is free in R.

4 The Universal Numbers

A universal number is any universal string. The use of the 99 allows the repre-
sentation of a string to be expressed appropariately as a string of non-negative
integers less than the radix. However the function of 99 in the radix is akin to
−1 as follows.

Example 4.1 In a string (a0, . . . , ai = 99, . . . , an), 99 = (r − 1), so the ith

instance of 99 equals (r − 1)ri−1 = ri − ri−1 so the string is equivalent to
(a0, . . . ,−1, ai+1 + 1, . . . , an).

2The double nine (99) is intended to recall the digit 9 as a mneumonic device. It should
not be taken to mean the digit 9 except when the radix is 10.
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In this manner the use of 99 may be replaced by −1. However the resulting
transformation creates two problems: first negative numbers are not in the radix
character set; second, if ai+1 6= 0 then ai+1 + 1 is no longer defined universally.
For this reason special care must be taken when using −1 in place of 99.

In any case, the use of the universal character set is defined easily with the
following addition and multiplication relations.

+ 0 1 99
0 0 1 99
1 1 ∅ 10
99 99 10 ∅

· 0 1 99
0 0 0 0
1 0 1 99
99 0 99 ∅

Definition 4.2 Given a universal formula α = (a1, . . . , an) and a radix r,
α(r) =

∑n
i=1 air

i−1.

Definition 4.3 Given the universal formulas α, β and γ, define multiplication
as αβ = γ if α(r)β(r) = γ(r) for all radices r. Likewise define addition as
α + β = γ when α(r) + β(r) = γ(r).

Notice not all universal formulas can be multiplied or summed, but the condition
when they may is well-defined. Since the multiplication and addition are direct
results of multiplication and addition in integral domains, the properties are
identical where ever the product and sums are defined.

Note that radix multiplication is polynomial multiplication within an equiv-
alence class. Therefore a product that is out of range will be reformated to be
in the normal form required by the radix range. This occurs exclusively when a
number divisible by 10 appears as a coefficient.

Definition 4.4 Given universal formals α and β, β is a universal factor of α
if β(r)|α(r) for all radices r. If 1 and α are the only universal factors of α, then
α is a universal prime.

Example 4.5 Let α = (1, 1, 1, 1) and β = (1, 1). Given any radix r > 1 it
follows:

α(r) = r3 + r2 + r + 1 = (r + 1)r2 + (r + 1) = (r + 1)(r2 + 1) = β(r)(r2 + 1)

so β(r)|α(r). Therefore β is a universal factor of α. By the same argument
γ = (1, 0, 1) is a universal factor of α.

Now let α = (1, 0, 0, 1), β = (1, 1) and γ = (99, 1). Again given any radix r,

β(r)γ(r) = (r + 1)((r − 1)r + 1) = ((r + 1)(r − 1))r + (r + 1)1
= (r2 − 1)r + r + 1 = r3 − r + r + 1 = r3 + 1 = α(r)

and so β and γ are universal factors of α.
Finally β = (1, 1) is a universal prime since (1, 0) does not divide β ever so

β is divisible only by 1 and itself. By the same empirical argument (1, 0) and
(99, 1) are universal primes.
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Division and multiplication of universal numbers can be done in radix 10 as
standard decimals, provided at each step only 0, 1, or 9 appear as digits.

Example 4.6 1111/11 and 1001/11 can be computed by standard division.

101 91
11

)
1111 11

)
1001

−11 −99
11 11

−11 −11
0 0

Now reading each 9 as 99 it follows 11 · 101 = 1111 and 11 · 991 = 1001.

Lemma 4.7 If α is a universal factor of γ then there exists a universal factor
β of γ such that αβ = γ.

Proof: Let α = (a1, . . . , al), β = (b1, . . . , bm) and γ = (g1, . . . , gn). Suppose α
and γ are universal and that αβ = γ so that α is a universal factor of ′g. Note
that the coefficients are all non-negative since such is the requirement for any
radix representation of a positive integer.

The product of polynomials perscribes that each gi =
∑

i−1=j+k ajbk. By
assumption each gi and each aj is either 0, 1 or 99. Therefore if gi = 0 then∑

i−1=j+k ajbk = 0. Since all coefficients are non-negative it follows the sum
is 0 only when either each ajbk = 0 or they sum to a number divisible by 10.
However 10 is only defined by 1 + 99 so each bk is either 0, 1, or 99. Therefore
β is universal, and so it is a universal factor of α. ¤

Proposition 4.8 Every universal formula can be factored into universal primes.

Proof: Given a universal formula γ it is either a universal prime or it has a
proper universal factor. If it has a proper universal factor α then by Lemma-??
there exists another universal factor β that together factors γ into αβ. Repeat
this process recursively on α and β until γ is expressed as a product of universal
primes. ¤

Proposition 4.9 The universal factorization of a universal number into uni-
versal primes is unique.

Proof: Apply the fundamental theorem of arithmetic. NOTE: this isn’t that
easy. There is a plausible case that universal primes may be derived from mul-
tiple primes and thus may not be unique. Requires the converse of the previous
proposition!! ¤

By dividing by all universal formulas between 1 and α will succeed in testing
whether α is a universal prime, however the process is tedious and inefficient.
A considerably simpler approach concerns the use of the Fundamental Theorem
of Arithmetic.
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Theorem 4.10 If a universal formula is a prime number with respect to some
radix, greater than 1, then it is a universal prime.

Proof: Since a universal factorization is an integer factorization, it follows
any prime number written as a universal number can be factored only trivially
and thus it can only be universally factored trivially. Therefore the universal
representation of any prime is a universal prime. ¤

Conjecture 4.11 A universal prime is a prime number in some radix.

Nothing is known about the converse of this statement. It is however the case
that given some universal primes (perhaps all), not all radices, will admit the
number as a prime. For instance, 111 = 7 in radix 2, and is prime, and therefore
111 is a universal prime. However 111 = 3 · 37 in radix 10 so it is not prime.

Knowing the converse of this statement could be increadibly useful. It would
provide an equivalent definition for prime numbers. Also a proof for Conjecture-
4.11 would replace the uncertainty in Corollary-5.4 with the statement that for
every prime p there exists an r where rp − 1/r − 1 is prime. Thus this would
provide an infinite class of prime numbers.

It is clear that every positive integer n is the image of a universal prime, for
instance 11 in radix n−1. Therefore every prime is an image of a universal prime.
However the stricter assumption that every universal prime have an image that
is prime is more involved. Presuming it is so, a new process to search for prime
numbers can be created. First locate a universal prime. This is simple since
certain infinite families of universal primes are known, for instance, strings for
1’s of prime length. Next take the image of the universal prime over various
radices until one returns a prime. There is no esitmation as to the efficiency of
this process, however it now doubt has certain optimizations.

So the questions are: are their any universal primes whose image is never
prime? Or are their any universal numbers at all whose image is never prime?
Are their any numbers that can’t be made the image of a given universal prime?
We know already the images of 11 span the integers greater than 1. Likewise
with 1, all positive integers. However 6 cannot be had from 111 in any radix
since any radix over 1 is out of range and in the tally 6 is not 111.

Before proceeding a tool will be established. What are all the possilbe uni-
versal representations of a number?

Proposition 4.12 Every positive integer n is represented universally in the
following radices:

• 1, 2, 3, n-1, n, n+1

• If n = mk then radix mi, where 0 < i < k.

Proof: First observe the number will be finite. This is because the length of
any universal number whose image is n in a radix r must be less than or equal
to n as in the case of the tally.
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Radices 1, 2 and 3 use only the symbols 0, 1, 99 so they represent n universally.
Radix n − 1 represents n as 11, radix n as 10, and radix n + 1 as 99 so each is
universal.

Finally suppose n = mk. Then in radix mi, n is 10 · · · 0 of length mk−i. ¤
Other universal forms may be found emperically. Note however the radices
1, 2, 3, n − 1, n, and n + 1 are particularly useful because they require no
knowledge of factors of n and can be computed directly. Notice infact in radix
3 the factorization of a number is always a prime universal factorization.

5 The General Mersenne Numbers

The structure of universal formulas tends to be regular, enough so that certain
factors are immediately appearent and others require simple checks. Surpris-
ingly one class of universal numbers appears repeatedly as a factor of universal
numbers, the string of all 1’s. Fortunately the factorization of this class of
universal formulas is fully determined.

Definition 5.1 A universal formula of all 1’s and length n is called a General
Mersenne Number of length n or simply an n-mersenne and is denoted ~1n.

Lemma 5.2 Every n-mersenne has an m-mersenne factor if and only if m|n.

Proof: Let m and n be positive integers. m|n if and only if ~1n can be parti-
tioned into n/m copies of ~1m. Therefore

~1n(r) =
n/m∑

i=1

~1m(r)rm(i−1) = ~1m(r)
n/m∑

i=1

rm(i−1).

So ~1m is a universal factor of ~1n if and only if m|n. ¤

The interesting property of General Mersenne Numbers is that their factor-
ization is completely determined by their length. The length is always less than
the magnitude of the number when placed in a specific radix, and since universal
factors are also factors in the usual sense once expressed according to a radix,
this offers a short cut to factoring potentially large numbers by using the length
instead of the number itself. Of course there is no guarantee that the universal
factorization is the complete factorization, but it will reduce the magnitude of
the factors for easier computation.

Proposition 5.3 A p-mersenne is a universal prime if and only if p is prime.

Proof: When p is prime Lemma-5.2 proves no proper mersenne divides the p-
mersenne. [PENDING: make a case that these are always factors of a factorable
mersenne.]

Suppose now α is a universal prime.[PENDING: write it up in all its glory.]
¤

7



Corollary 5.4 Let p be a prime and r > 1. rp−1
r−1 may be prime.

Proof: rp = (1, 0, . . . , 0)(r) of length p + 1 so rp− 1 = (99, . . . 99)(r) is of length
p and so rp−1

r−1 = (1, . . . , 1)(r) = α(r) is of prime length. Therefore by Theorem-
5.3 it follows α is a universal prime and so it may have a prime image under
some radix. ¤

Corollary 5.5 (Classic Mersenne Numbers) 2p − 1 may be prime.

Proof: Let r = 2 and apply Corollary-5.4 ¤

Proposition 5.6 The following factors are all examples of the prolific mersenne
factors.

• (1, 0, . . . , 0, 1)2n+4 = ~12(990(1010 · · · 01)2n + 1) where n ≥ 0.

• (1, 0, 1, 1, . . . , 1, 1, 0, 1)n+2 = ~1n · 991 where n > 1.

• (1, 1, 0, 1, 1, . . . , 1, 1, 0, 0, 1)n+3 = ~1n · 99991, n > 2.

Proof: Induction. ¤

Corollary 5.7 (Mersenne Factor Tip) Given a universal formula, α, ex-
pressed with all 0’s and 1’s, if α is not a universal prime then it will likely
have ~1m as a factor where m is the sum total of all the 1’s in α.

6 Compressed Factorization

The task of factoring large numbers is difficult. However most computational
systems rarely deal with raw large numbers but invariably compress the in-
formation and swap the the details in the compressed format. The goal is to
explore certain factorization techniques that can be applied to the compressed
representations of large numbers. To do this we require a lossless compression
scheme. The scheme we adopt is a run length compression scheme.

Given an integer expressed according to a specified radix (base) b, we may
compress the representation of the number by describing the number interms of
sequences of repeating digits.

Proposition 6.1 In any radix b, a number beginning with 1 and ending with 1
and zeros in between is prime only if it has prime length plus 1. That is, bn + 1
is prime only if n is composite.

Proof: Let m = bn + 1. ¤

Corollary 6.2 (Fermat Criterion) 22n

+ 1 may be prime.
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7 Radix Free Relations

We already know that 11·101 = 1111 in any radix and any number of generaliza-
tions of this method. Consequently we know 22 ·101 = 2222 and 11 ·202 = 2222
and in general k(11 · 101) = k · 1111. While k may not be in expressed in the
given radix, for instance 55 · 101 = 5555 in radix 2 is not expressed correctly,
but the relation still holds; that is, 5 · (11 · 11) = (101 · 11) · 101) = 1111 · 101 =
1001011 = 101 · 1111 = 5 · 1111. This generalization recalls the notion of a set
of generators, the minimal relations being true in any radix, and the scalings
being true once expressed according to a given radix.

So we build a category in which to place our universal - radix free - relations.
Given that the relations must translate into any radix it follows a limited number
of symbols may be used. Since the smallest radix is 2 it follows at most 3 symbols
may be used: 0 - meaning the null digit in the radix, 1, meaning the first non-null
digit, and 99 - the larget digit. In the case of radix 2, 1= 99.3

3The double nine ( 99) is meant to invoke the intuition of 9 in radix 10. It is however a
universal 9 so that 1+ 99=10 in whatever radix the context requires.
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