Combinatorics of Simple Groups

James B. Wilson

July 18, 2003

1 Combinatorial Rules for Simplicity

Theorem 1.1 If $|G|=p^{i} m$ with $(p, m)=1$, then G is simple only if

$$
p^{i} \mid(m-1)!.
$$

Proof: Suppose P is a Sylow-p-subgroup of G. Then G acts on $[G: P]=m$ cosets. Hence as G is simple, G is embedded in S_{m}. So $p^{i} m$ divides the order m ! which implies $p^{i} \mid(m-1)$!.

Definition 1.2 Let p be a prime dividing the order of $|G|$. Then define $r_{p}(G)$ to be the number of Sylow-p-subgroups of G.

Theorem 1.3 Let G be non-abelian and p a divisor of $|G|$. If G is simple then the following must all be true:
(i) $r_{p} \equiv 1(\bmod p)$
(ii) $r_{p} \neq 1$
(iii) $2|G| \leq\left(r_{p}-1\right)$! or $G \cong A_{r_{p}}$.
(iv) $2 k \mid\left(r_{p}-1\right)$! where $|G|=r_{p} \cdot k$, or $G \cong A_{r_{p}}$.

Proof: The first two are a result of the Thrid and Second Sylow theorem.
For (iii) consider group actions. By the second Sylow theorem we know all Sylow-p-subgroups are conjugate. Moreover, G must therefore act transitively on the Sylow-p-subgroups by conjugation. This gives a homomorphism $f: G \rightarrow$ $S_{r_{p}}$. However if G is to be simple then it is clear that f has a trivial kernel so that G is embedded in $S_{r_{p}}$.

Since $A_{r_{p}} \unlhd S_{r_{p}}$ so that indeed $G \cap A_{r_{p}} \unlhd G$. So either $A_{r_{p}} \cap G=G$ or $A_{r_{p}} \cap G=\mathbf{0}$. Suppose the intersection is trivial. Then

$$
2=\left[S_{r_{p}}: A_{r_{p}}\right] \geq\left[G \vee A_{r_{p}}: A_{r_{p}}\right]=\left[G: A_{r_{p}} \cap G\right]=|G| .
$$

We are not interested in such small groups so we presume that G does not intersect trivially.

Suppose $p \neq 3$ we know $r_{p} \neq 4$. Hence we have the rule that $A_{r_{p}}$ is simple so indeed we have that $\left[A_{r_{p}}: G\right] \geq r_{p}$ or that $G=A_{r_{p}}$. Thus

$$
r_{p} \leq \frac{r_{p}!}{2|G|} ; \quad|G| \leq \frac{\left(r_{p}-1\right)!}{2} .
$$

Moreover,

$$
|G|\left|\frac{r_{p}!}{2} \quad \frac{|G|}{r_{p}}\right| \frac{\left(r_{p}-1\right)!}{2} .
$$

Finally, suppose $p=3$ and that $r_{3}=4$. Then G is embedded in A_{4} as it is simple. Note 12 divides the order of G by assumption so indeed $G=A_{4}$ which is not simple. So when $p=3$ it follows $r_{3} \neq 4$. So as the test $|G| \leq \frac{\left(r_{p}-1\right)!}{2}$ rules out this case we may avoid adding it to the list.

We must ensure we have sufficient elements to equipe a group G with the given arrangement of Sylow-p-subgroups. This falls to the following theorem.

Theorem 1.4 If $|G|=p_{1}^{i_{1}} \cdots p_{n}^{i_{n}}$ then the following must be true:

$$
|G| \geq 1+\sum_{j=1}^{n} r_{p_{j}} p_{j}^{i_{j}-1}\left(p_{j}-1\right)-\sum_{j=1}^{n} p_{j}^{i_{j}-1}
$$

Example: A group of order 60 may be simple. First we have $2^{2} \mid(15-1)$! and $3 \mid(20-1)$! as well as $5 \mid(12-1)$!. Theorem-1.1 is satisfied.

Now we use Theorem-1.3

- By (i) we have $r_{2}=1,3,5,15$. Yet (ii) eliminates 1 , while (iii) eliminates 3. If $r_{2}=5$ then it is possible that $G=A_{5}$ in which case we are done. So suppose instead $r_{2}=15$. We check with (iv) and are satisfied.
- By (i) we have $r_{3}=1,4,10$. However (ii) eleminates 1 , and (iii) eliminates 4 leaving $r_{3}=10$. (iv) also is satisfied.
- Finally $r_{5}=1,6$ by (i), but we exclude 1 by (ii). Note that (iii) and (iv) work for $r_{5}=6$.

Using $r_{2}=5$ we are satisified that G is simple. However using $r_{2}=15$ we have a problem in Theorem-1.4

$$
2^{1}(1+15(2-1))+3^{0}(1+10(3-1))+5^{0}(1+6(5-1))=78
$$

Thus $r_{2}=5, r_{3}=10$ and $r_{5}=6$.

2 Non-Simplicity of $2^{i} p$ Groups

	3	5	7	11	13
2	$r_{3}=1$	$r_{5}=1$	$r_{7}=1$	$r_{11}=1$	$r_{13}=1$
2^{2}	$2^{2} \nmid(3-1)!$	$r_{5}=1$	$r_{7}=1$	\vdots	\vdots
2^{3}	\vdots	$r_{5}=1$	$1.3 . i i i, p=2$		
2^{4}		$2^{4} \nmid(5-1)!$	$1.3 . i i i, p=2$		
2^{5}		\vdots	$2^{5} \nmid(7-1)!$		
2^{6}			\vdots		
2^{7}					
2^{8}					$r_{11}=1$
2^{9}					$2^{9} \nmid(11-1)!$
2^{10}					\vdots
2^{11}					$2_{13}=1$
\vdots					

3 Non-Simplicity of $2^{i} p^{2}$ Groups

	3^{2}	5^{5}	7^{2}	11^{2}	13^{2}
2	$r_{3}=1$	$r_{5}=1$	$r_{7}=1$	$r_{11}=1$	$r_{13}=1$
2^{2}	$2^{2} \nmid(3-1)!$	$r_{5}=1$	$r_{7}=1$	\vdots	\vdots
2^{3}	\vdots	$r_{5}=1$	$1.3 . i i i, p=2$		
2^{4}		$2^{4} \nmid(5-1)!$	$1.3 . i i i, p=2$		
2^{5}		\vdots	$2^{5} \nmid(7-1)!$		
2^{6}			\vdots		
2^{7}					
2^{8}				$r_{11}=1$	
2^{9}					\vdots
2^{10}					
2^{11}					$\left.2^{9} \nmid 11-1\right)!$
\vdots					\vdots

