Combinatorics of Simple Groups

James B. Wilson

July 18, 2003

1 Combinatorial Rules for Simplicity

Theorem 1.1 If $|G| = p^i m$ with (p, m) = 1, then G is simple only if

 $p^i \mid (m-1)!.$

Proof: Suppose P is a Sylow-p-subgroup of G. Then G acts on [G : P] = m cosets. Hence as G is simple, G is embedded in S_m . So p^im divides the order m! which implies $p^i|(m-1)!$. \Box

Definition 1.2 Let p be a prime dividing the order of |G|. Then define $r_p(G)$ to be the number of Sylow-p-subgroups of G.

Theorem 1.3 Let G be non-abelian and p a divisor of |G|. If G is simple then the following must all be true:

- (i) $r_p \equiv 1 \pmod{p}$
- (ii) $r_p \neq 1$
- (*iii*) $2|G| \le (r_p 1)!$ or $G \cong A_{r_p}$.
- (iv) $2k|(r_p-1)!$ where $|G| = r_p \cdot k$, or $G \cong A_{r_p}$.

Proof: The first two are a result of the Thrid and Second Sylow theorem.

For (iii) consider group actions. By the second Sylow theorem we know all Sylow-p-subgroups are conjugate. Moreover, G must therefore act transitively on the Sylow-p-subgroups by conjugation. This gives a homomorphism $f: G \to S_{r_p}$. However if G is to be simple then it is clear that f has a trivial kernel so that G is embedded in S_{r_p} .

Since $A_{r_p} \leq S_{r_p}$ so that indeed $G \cap A_{r_p} \leq G$. So either $A_{r_p} \cap G = G$ or $A_{r_p} \cap G = \mathbf{0}$. Suppose the intersection is trivial. Then

$$2 = [S_{r_p} : A_{r_p}] \ge [G \lor A_{r_p} : A_{r_p}] = [G : A_{r_p} \cap G] = |G|.$$

We are not interested in such small groups so we presume that G does not intersect trivially.

Suppose $p \neq 3$ we know $r_p \neq 4$. Hence we have the rule that A_{r_p} is simple so indeed we have that $[A_{r_p}:G] \geq r_p$ or that $G = A_{r_p}$. Thus

$$r_p \le \frac{r_p!}{2|G|}; \qquad |G| \le \frac{(r_p - 1)!}{2}$$

Moreover,

$$G\left|\left|\frac{r_p!}{2}\right| = \frac{|G|}{r_p}\left|\frac{(r_p-1)!}{2}\right|$$

Finally, suppose p = 3 and that $r_3 = 4$. Then G is embedded in A_4 as it is simple. Note 12 divides the order of G by assumption so indeed $G = A_4$ which is not simple. So when p = 3 it follows $r_3 \neq 4$. So as the test $|G| \leq \frac{(r_p - 1)!}{2}$ rules out this case we may avoid adding it to the list. \Box

We must ensure we have sufficient elements to equipe a group G with the given arrangement of Sylow-p-subgroups. This falls to the following theorem.

Theorem 1.4 If $|G| = p_1^{i_1} \cdots p_n^{i_n}$ then the following must be true:

$$|G| \ge 1 + \sum_{j=1}^{n} r_{p_j} p_j^{i_j - 1} (p_j - 1) - \sum_{j=1}^{n} p_j^{i_j - 1}.$$

Example: A group of order 60 may be simple. First we have $2^2|(15-1)!$ and 3|(20-1)! as well as 5|(12-1)!. Theorem-1.1 is satisfied.

Now we use Theorem-1.3

- By (i) we have r₂ = 1, 3, 5, 15. Yet (ii) eliminates 1, while (iii) eliminates 3. If r₂ = 5 then it is possible that G = A₅ in which case we are done. So suppose instead r₂ = 15. We check with (iv) and are satisfied.
- By (i) we have $r_3 = 1, 4, 10$. However (ii) eleminates 1, and (iii) eliminates 4 leaving $r_3 = 10$. (iv) also is satisfied.
- Finally $r_5 = 1, 6$ by (i), but we exclude 1 by (ii). Note that (iii) and (iv) work for $r_5 = 6$.

Using $r_2 = 5$ we are satisified that G is simple. However using $r_2 = 15$ we have a problem in Theorem-1.4

$$2^{1}(1+15(2-1)) + 3^{0}(1+10(3-1)) + 5^{0}(1+6(5-1)) = 78$$

Thus $r_2 = 5$, $r_3 = 10$ and $r_5 = 6$. \Box

	3	5	7	11	13
2	$r_3 = 1$	$r_5 = 1$	$r_7 = 1$	$r_{11} = 1$	$r_{13} = 1$
2^{2}	$2^2 \nmid (3-1)!$	$r_{5} = 1$	$r_{7} = 1$	•	•
$\begin{vmatrix} 2^3 \\ 2^4 \end{vmatrix}$:	$\begin{array}{c} r_5 = 1 \\ 2^4 \nmid (5-1)! \end{array}$	$\begin{array}{l} 1.3.iii, p = 2 \\ 1.3.iii, p = 2 \end{array}$		
2^{5}		:	$2^5 mid (7-1)!$		
2^{6}					
2^{7}				•	
2^{8}				$r_{11} = 1$	
2^{9}				$2^9 \nmid (11-1)!$	•
2^{10}				•	$r_{13} = 1$
2^{11}					$2^{11} \nmid (13-1)!$
:					

2 Non-Simplicity of $2^i p$ Groups

3 Non-Simplicity of $2^i p^2$ Groups

	3^{2}	5^{5}	7^{2}	11^{2}	13^{2}
2	$r_3 = 1$	$r_5 = 1$	$r_7 = 1$	$r_{11} = 1$	$r_{13} = 1$
2^{2}	$2^2 \nmid (3-1)!$	$r_{5} = 1$	$r_{7} = 1$	•	•
$ \begin{array}{c} 2^{3} \\ 2^{4} \end{array} $:	$ \begin{array}{c} r_5 = 1 \\ 2^4 \notin (5-1)! \end{array} $	1.3. <i>iii</i> , $p = 2$ 1.3. <i>iii</i> , $p = 2$		
2^{5}		:	$2^5 \nmid (7-1)!$		
2^{6}			:		
2^{7}				•	
2^{8}				$r_{11} = 1$	
2^{9}				$2^9 \nmid (11-1)!$:
2^{10}					$r_{13} = 1$
2^{11}					$2^{11} \neq (13-1)!$
:					