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Abstract. We study paths on a tree associated to a definite rational quaternion algebra
H, and show that the class number of an order of level pn in H is equal to the number of
orbits of a certain group action on the set of paths of legnth n on the tree. We establish
recursion formulas among the orbits of the paths, which allow us to prove relations for the
Brandt matrices B(pk). Consequently, we obtain relations for the Hecke operators T (pk)
for primes dividing the level. As an application, we compute the representation numbers of
the norm form of the algebra restricted to the order. This generalizes results of Vignéras
and Pays who studied maximal orders in quaternion algebras.

0. Introduction

Let H be a rational quaternion algebra, Γ a maximal order in H, and p a prime which splits
in H, so Hp = H⊗Q Qp

∼= M2(Qp). The set of all maximal orders in Hp can be made into
a graph by defining a distance between the maximal orders, and placing an edge between
any two orders at distance one; this graph is a (p + 1)-regular tree. Now consider maximal
orders Γ′ in the global algebra H with the property that Γ′q = Γq for all q 6= p, and define
the distance between two of these orders to be the distance between their corresponding
localizations at the prime p. The unit group of Γ(p) = Γ ⊗Z Z[1

p
] acts on these orders, and

the class number of Γ is equal to the number of orbits of Γ(p)× under this action.

Now let Λ be an order of level pn in H, and as before set Λ(p) = Λ⊗Z Z[1
p
]. We show there

is a group action of Λ(p)× on the set of paths of length n on the tree, and that the class
number of Λ is equal to the number of orbits of Λ(p)× under this action. This result allows
us to define certain matrices which are very close to the classical Brandt matrices B(pk), for
primes dividing the level of Λ. Using the structure of the tree, we see that when n = 1 we
can very easily derive recursion formulas for these matrices. As an application, we show this
allows us to recursively compute the representation numbers of certain quadratic forms over
Q.

1. Preliminaries

Let H be a rational quaternion algebra; that is, a central simple algebra of dimension 4 over
Q. For a prime p ∈ Z (including infinity), we denote by Hp the quaternion algebra H⊗Q Qp

over Qp. The prime p ramifies in H if Hp is a division algebra; p splits in H if Hp
∼= M2(Qp).

We shall be considering only definite quaternion algebras; so H ramifies at the infinite prime.
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A subset Λ ⊂ H is called an Z-order if Λ is a ring containing Z as a subring, is finitely
generated as a Z-module and Λ⊗Z Q = H. We shall be interested in the following type of
Z-orders.

Definition 1. Let N be a positive integer prime to the discriminant D = D(H/Q) of H.
An order Λ has level N if for each finite prime q, Λq = Λ⊗Z Zq satisfies:

(1) Λq is the unique maximal order of Hq when q|D

(2) Λq
∼=
(

Zq Zq

qordq(N)Zq Zq

)
, otherwise.

If Λq satisfies the second condition listed above, we say Λq is an Eichler order of level qordq(N)

in Hq.

2. The Tree and Class Numbers

We identify Hp with M2(Qp) when p - D, so the maximal orders of Hp are the conjugates of
M2(Zp). Defining the distance between two maximal orders by

d(x−1
p M2(Zp)xp, y

−1
p M2(Zp)yp) = ordp(det(xpy

−1
p ))− 2 ·min{ordp(xpy

−1
p )ij},

one obtains the following:

Theorem 1. ([6], p. 40)The graph T whose vertices are the maximal orders of Hp and whose
edges are the pairs of vertices at distance 1 is a (p+ 1)-regular tree.

The following gives a useful characterization of the Eichler orders in Hp (see [6], Lemma
2.4):

Proposition 1. Let Λp be an order in Hp. The following are equivalent:

(1) Λp = x−1
p

(
Zp Zp

pnZp Zp

)
xp for some xp ∈ H×p , n ∈ Z+.

(2) There exists a unique pair of maximal orders Γ0
p and Γnp of Hp such that Λp = Γ0

p∩Γnp .
(3) Λp is the intersection of two maximal orders at distance n in T .

As noted in [4], tp ∈ H×p normalizes Λp = x−1
p

(
Zp Zp

pnZp Zp

)
xp = Γ0

p ∩ Γnp if and only if

conjugation by tp permutes the two maximal orders Γ0
p and Γnp . This implies that tp ∈ Λ×p Q×p

or tp ∈ Λ×p Q×p sp, where sp = x−1
p

(
0 1
pn 0

)
xp. Thus, the normalizer of Λp is given by N(Λp) =

Λ×p Q×p ∪ Λ×p Q×p sp.

We now shift our attention to the global setting. Fix an order Λ of level pn in H, and observe
that the set

XΛ = {maximal Γ ⊂ H |Γq = Λq for all primes q 6= p}
is in one-to-one correspondence with the vertices of T by the local-global correspondence
for orders. We define the distance between two global maximal orders to be the distance
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between their corresponding localizations at the prime p. To make XΛ into a graph, we put
an edge between two orders distance 1 apart.

By a path of length n in XΛ we mean a sequence of vertices (Γ0,Γ1, · · · ,Γn) such that
d(Γi,Γi+1) = 1 for i = 0, · · · , n−1. If the sequence is such that Γi 6= Γi+2 for i = 0, · · · , n−2
then the path is called a path of length n; i.e., a path of length n without backtracking.
Since XΛ is a tree, it is clear that any path is uniquely determined by Γ0 and Γn, so we write
(Γ0,Γn) for the path from Γ0 to Γn. We will say that the path g = (Γ0,Γn) has the opposite
orientation to g = (Γn,Γ0). Denote by Pn(XΛ) the set of paths in XΛ of length n.

Let JH denote the ideles of the quaternion algebra H; so if Λ is an order of level pn,

JH =

{
x̃ = (xq) ∈

∏
q

H×q
∣∣ xq ∈ Λ×q for almost all q

}
,

where the product is over all finite and infinite primes of Q. A left Λ-ideal is an Z-lattice
I on H so that Iq = Λqxq for all finite q with xq ∈ H×q . Further, xq ∈ Λ×q for almost all q
(since Iq = Λq for almost all q), so there exists an x̃ ∈ JH whose components are equal to xq
for all finite q. Hence we may write I = Λx̃, where x̃ ∈ JH is an appropriate idele. The left
order of I is given by {x ∈ H |xI ⊂ I}, and the right order of I is {x ∈ H | Ix ⊂ I}. I is
said to be normal if its left (hence right) order is maximal.

Two left Λ-ideals I and J are in the same ideal class if I = Jx for some x ∈ H×. If

U(Λ) = {x̃ = xq ∈ JH |xq ∈ Λ×q for all finite primes q},

then the left ideal classes of Λ are in one-to-one correspondence with the cosets U(Λ)\JH/H
×.

The number of ideal classes is finite and is called the class number of Λ. The cardinality
of the classes of two-sided ideals of Λ is called the class number of two-sided ideals. If
{I1, I2, . . . , Ih} is a complete set of left Λ-ideal class representatives with corresponding right
orders {Λ1,Λ2, . . . ,Λh}, then the number of mutually non-isomorphic orders in this set is
called the type number of Λ. We shall need the following

Lemma 1. (Lemma 5.6 of [6]) Let {Λ = Λ1,Λ2, . . . ,Λt} give a complete set of the types
of orders of level pn in H. If hi is the class number of two-sided Λi-ideals, then h =

∑t
i=1 hi.

Now set Λ(p) equal to the Z(p)-order Λ⊗Z Z(p), where

Z(p) = {x ∈ Q |x ∈ Zq for all finite primes q 6= p} =
⋂
q 6=p

Z(q).

Note that Λ
(p)
q = Λq when q 6= p, hence a ∈ Λ(p)× implies that a ∈ Λ×q for all q 6= p. Let

G = (Γ0,Γn) be in Pn(XΛ) and a ∈ Λ(p)×. By the local-global correspondence for orders, the
pair (a−1Γ0a, a−1Γna) is uniquely determined by the set of local orders

{
(a−1Γ0

qa , a
−1Γnq a)

}
.

When q 6= p, (a−1Γ0
qa , a

−1Γnq a) = (a−1Λqa , a
−1Λqa) = (Λq , Λq) since a ∈ Λ×q . Hence,

{
(a−1Γ0

qa , a
−1Γnq a)

}
↔
{

(Λq , Λq) if q 6= p

(a−1Γ0
pa , a

−1Γnpa) if q = p.

}
.
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As the local orders Γ0
p and Γnp are at distance n in T , it is easy to see that the orders a−1Γ0

pa

and a−1Γnpa are also at distance n as well. Hence (a−1Γ0a, a−1Γna) defines an element of

Pn(XΛ), and we see there is a natural action of Λ(p)× on the set Pn(XΛ).

Recall that the quaternion algebra H/Q will satisfy the Eichler condition relative to a
Dedekind domain R with quotient field Q if at least one prime of Q that does not arise
from a prime ideal of R splits in H. We now recall a special case of Eichler’s norm theorem.

Theorem 2. ([5], §34, Theorem 34.9) Let R be a Dedekind domain with quotient field
Q, and let H be a quaternion algebra which satisfies the Eichler condition relative to R. If
I is a normal ideal of H, then I is principal if and only if its reduced norm is principal.

We shall apply this theorem to the order Λ(p). Note that

Λ(p) =
⋂
q 6=p

(Λq ∩H)

is a maximal Z(p)-order since it localizes to a maximal order for every prime in Z(p), so every
left Λ(p)-ideal is normal. Since the norm of any left Λ(p)-ideal I is a principal ideal of Z(p),
by Eichler’s theorem, I must then be principal.

We can now prove the following generalization of Vignéras ([6], p. 147):

Theorem 3. The number of orbits in Pn(XΛ) under the action of Λ(p)× is equal to the class
number of Λ.

Proof. We shall establish a bijection between the following three sets:

U(Λ)\JH/H
× ←→ Λ×p Q×p \H×p /Λ(p)× ←→ Pn(XΛ)/Λ(p)×.

As noted above, Λ(p) has class number one, so that |U(Λ(p))\JH/H
×| = 1. We then can

write JH as

JH = U(Λ(p))H× = (
∏
q

Λ(p)×
q ) ·H× = (H×∞H×p

∏
q 6=p

Λ×q ) ·H×.

Accordingly, if h̃ ∈ JH, we write h̃ as (h∞, hp, hq) · h, where h∞ ∈ H×∞, hp ∈ H×p , and

hq ∈
∏

q 6=p Λ×q . We first establish a bijection between U(Λ)\JH/H
× and Λ×p Q×p \H×p /Λ(p)×

by mapping Λ×p Q×p hpΛ
(p)× to U(Λ)(1, hp, 1)H×. With the breakdown of h̃ ∈ JH just noted,

we at once that the map is surjective.

To show that the map is well-defined, we need to show that U(Λ)(1, rpkphpr, 1)H× =
U(Λ)(1, hp, 1)H×, where rp ∈ Λ×p , kp ∈ Q×p and r ∈ Λ(p)×. Using the fact that JQ = U(Z)Q×,
and that Q× is in the center of H× and H×q for all q, we have U(Λ)(1, rpkphpr, 1)H× =

U(Λ)(1, hpr, 1)H×. Next, since r ∈ Λ(p)× ⊂ H×, it must be that U(Λ)(1, hpr, 1)H× =
U(Λ)(r−1, hp, r

−1)H×. But since Λ(p)× ⊂ Λ×q when q 6= p, we see that U(Λ)(r−1, hp, r
−1)H× =

U(Λ)(1, hp, 1)H×, and the map is well-defined.

Finally, suppose that U(Λ)(1, hp, 1)H× = U(Λ)(1, lp, 1)H×, so (1, lp, 1) = (r∞h, rphph, rqh),
for some (r∞, rp, rq) ∈ U(Λ) and h ∈ H×. But then rqh = 1 for all q 6= p, and so h ∈
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q 6=p(Λ

×
q ∩H×) = Λ(p)×. Consequently, Λ×p Q×p rphphΛ(p)× = Λ×p Q×p hpΛ

(p)×, making the map
1− 1.

To establish a bijection between Λ×p Q×p \H×p /Λ(p)× and Pn(XΛ)/Λ(p)×, we first prove there is
a bijection between the cosets Λ×p Q×p \H×p and the elements of Pn(XΛ). By Proposition 1,

we know that Λp = x−1
p

(
Zp Zp

pnZp Zp

)
xp for some xp ∈ H×p . Put Γ0

p = x−1
p

(
Zp Zp

Zp Zp

)
xp and

Γnp = x−1
p

(
Zp p−nZp

pnZp Zp

)
xp, so that Λp = Γ0

p ∩ Γnp , and map

Λ×p Q×p hp −→ (h−1
p Γ0

php , h
−1
p Γnphp).

We observe that since Γ0
p and Γnp are maximal and distance n apart, (h−1

p Γ0
php , h

−1
p Γnphp)

corresponds to a path of length n in Pn(XΛ).

Since Λ×p Q×p ⊂ N(Λp) = N(Γ0
p ∩ Γnp ), the map is clearly well-defined. To show the map is

surjective, suppose that G = (Γ
′0,Γ

′n) is a path in XΛ. We associate to G the local order
Γ
′0
p ∩ Γ

′n
p . By Proposition 1,

Γ
′0
p ∩ Γ

′n
p = y−1

p

(
Zp Zp

pnZp Zp

)
yp = y−1

p xpΓ
0
px
−1
p yp ∩ y−1

p xpΓ
n
px
−1
p yp,

for some yp ∈ H×p . But by Proposition 1 again, the order y−1
p

(
Zp Zp

pnZp Zp

)
yp is the in-

tersection of uniquely determined maximal orders. It follows that (Γ
′0
p , Γ

′n
p ) is either

(y−1
p xpΓ

0
py
−1
p xp , y

−1
p xpΓ

n
py
−1
p xp) or (y−1

p xpΓ
n
py
−1
p xp , y

−1
p xpΓ

0
py
−1
p xp). Noting that

(y−1
p xpΓ

n
py
−1
p xp , y

−1
p xpΓ

0
py
−1
p xp) = (y−1

p xps
−1
p Γ0

pspx
−1
p yp , y

−1
p xps

−1
p Γnpspx

−1
p yp),

we see that the map is surjective.

To show that the map is one-to-one, suppose that (h−1
p Γ0

php , h
−1
p Γnphp) = (l−1

p Γ0
plp , lpΓ

n
p lp).

These conditions imply that lph
−1
p ∈ N(Γ0

p)∩N(Γnp ) ⊂ N(Γ0
p ∩ Γnp ). Thus, lph

−1
p ∈ Λ×p Q×p y

ν ,

for ν = 0 or 1. But if lph
−1
p ∈ Λ×p Q×p y, then lp = rpkpyhp, for some rp ∈ Λ×p and kp ∈ Q×p ,

and

l−1
p Γ0

plp = h−1
p y−1k−1

p r−1
p Γ0

prpkpyhp

= h−1
p Γnphp

6= h−1
p Γ0

php.

Hence ν must be 0. We then have that lp ∈ Λ×p Q×p hp and the map is 1 − 1. Hence the
elements of Pn(XΛ) are in one-to-one correspondence with the cosets Λ×p Q×p \H×p .

The bijection between Λ×p Q×p \H×p /Λ(p)× and Pn(XΛ)/Λ(p)× is now immediate. If G =

(Γ
′0,Γ

′n), then as above, G corresponds to a pair of local orders of the form (h−1
p Γ0hp, h

−1
p Γnphp)

in T . An orbit of G is then {(a−1h−1
p Γ0

phpa , a
−1h−1

p Γnphpa) | a ∈ Λ(p)×} which we map to

Λ×p Q×p hpΛ
(p)×. This map is clearly surjective. To check it is 1−1, we note that when rp ∈ Λ×p ,

kp ∈ Q×p , and r ∈ Λ(p)×,

(r−1h−1
p k−1

p r−1
p Γ0

prpkphpr , r
−1h−1

p k−1
p r−1

p Γnprpkphpr) = (r−1h−1
p Γ0

phpr , r
−1h−1

p Γnphpr),
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which is in the same orbit as (h−1
p Γ0

php , h
−1
p Γnphp). �

3. Brandt Matrices

If Λ is any order of level pn and I is a left Λ-ideal, let {I1, I2, . . . , Ih} be a complete set of left
Λ-ideal class representatives with corresponding right orders {Λ1,Λ2, . . . ,Λh}. The Brandt
matrix B(m) is defined by setting B(m)ij equal to the number of integral left Λi-ideals of
norm m which are in the same ideal class as I−1

i Ij (see [6], p. 100). The Brandt matrices
give the action of the Hecke operators acting on a space of theta series (see, for example,
[1]).

We now define a set of matrices closely related to the Brandt matrices. Suppose that g =
(Γ0,Γn) and h = (Γ

′0,Γ
′n) are two paths of length n. We say h is at distance k from g if

d(Γ0,Γ
′0) = k and d(Γn,Γn

′
) ≤ k.

Definition 2. Let J be an index set for the orbits of the paths of fixed length n. Define the

matrix P (k) by setting (P
(k)
ij )i,j∈J equal to the number of paths in orbit j at distance k from

a fixed path in orbit i.

It is not hard to show this number does not depend upon the representative in orbit i.

For Λ an order of level pn, we choose two maximal orders Γ0 and Γn so that Λ = Γ0 ∩ Γn.
We then associate to Λ the path (Γ0,Γn) ∈ Pn(XΛ). If {Λx̃1,Λx̃2, . . . ,Λx̃h} is a complete set
of left Λ-ideal class representatives with corresponding right orders {x̃1

−1Λx̃1, x̃2
−1Λx̃2, . . . ,

x̃h
−1Λhx̃h}, then by Theorem 3, the set {(x̃i−1Γ0x̃i, x̃i

−1Γnx̃i)} | i = 1, . . . , h} is a complete
set of representatives for the orbits of the paths. One easily checks the following

Lemma 2. Suppose that g = (Γ0,Γn) is any path of length n, and let Λ = Γ0 ∩ Γn. Then
there is a 1 − 1 correspondence between paths on the tree at distance k from g and integral
left Λ-ideals Λỹ of norm pk such that yp ∈ Λp − pΛp.

Hence we see that there is a 1 − 1 correspondence between the set of integral left Λi-ideals
I = Λiỹ of norm pk such that I ∼ I−1

i Ij with the additional property that yp ∈ Λip − pΛip

and the set of paths in Pn(XΛ) in orbit j (j ∈ J) which are at distance k from (Γ0
i ,Γ

n
i ). With

the above observations one establishes the following relationships between P (k) and B(pk):

P (0) = B(1) = I

P (1) = B(p)

P (k) = B(pk)−B(pk−2) k > 1.

We shall show that by studying the tree we can find recursion formulas for the paths on the
tree, thereby obtaining recursion formulas for the Brandt matrices B(pk), for p dividing the
level of the order.
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3.1. The Case n = 1. We now specialize to the case n = 1, so Λ has level p. See also [2] for
a different treatment of this case. Let g = (Γ0,Γ1) be a fixed path in P1(XΛ). We consider
all paths at distance k from g.

          

           

      

 

Paths at distance 2 from the
central path.

Considering the product P (2)P (1), we obtain the following:

          

           

      

 

                  p copies

           

      

 

                 p copies

           

      

 

Paths at distance 3 from the
central path.

Paths at distance 3 from the
central path.

Paths in “reverse” direction
from a path at distance 2 from the

central path.

Induction on k ≥ 2 gives us:

P (k+1) = P (k)P (1) − pP (k−1) − pP (k), for k ≥ 1,

where P (k)
ij is equal to the number of paths in orbit j whose reversed path is at distance k

from a fixed path in orbit i.

If g = (x̃−1Γ0x̃, x̃−1Γnx̃) and h = (ỹ−1Γ0ỹ, ỹ−1Γnỹ) are paths in orbit j, then

g = (a−1ỹ−1Γ0ỹa, a−1ỹ−1Γnỹa)

for some a ∈ Λ(p)×. Then we observe that the “reverse” of g:

g = (a−1ỹ−1( 0 1
p 0 )−1Γ0( 0 1

p 0 )ỹa, a−1ỹ−1( 0 1
p 0 )−1Γn( 0 1

p 0 )ỹa)

is in the same orbit as h. Hence we see that g, h must be in the same orbit r for some r,

which makes P (k)
ij = P

(k)
ir . Thus

P (k) = P (k)E,

where E is a permutation matrix of order 1 or 2.
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Hence we have

Theorem 4. Let Λ be an order of level p in H. The matrices P (k) satisfy the following
recursion formulas:

P (k+1) = P (k)P (1) − pP (k−1) − pP (k)E for k ≥ 1,

where E is a permutation matrix of order 1 or 2. Therefore, the Brandt matrices B(pk)
satisfy

B(pk+1) = B(pk)B(p)− pB(pk−1)− pB(pk)E for k ≥ 1.

The permutation matrix E can often be explicitly computed. Given a path g = (Γ0,Γ1) with

Λ = Γ0 ∩ Γ1, then Λp = x−1
p

(
Zp Zp

pZp Zp

)
xp, for some xp ∈ H×p . We define the idele π̃ ∈ JH

by:

π̃ = (πq) =


x−1
p

(
0 1

p 0

)
xp, if q = p

1 otherwise.

We observe that the ideal M̃ = Λπ̃ is two-sided since πp is in the normalizer in Λp.

We have associated the path g = (Γ0,Γ1) to the path g = (Γ1,Γ0) in P (k) by conjugating by
π̃. By Theorem 3, g is in the same orbit as g if and only if Λπ̃ is principal.

Example 1. Let H be the quaternion algebra with vector space basis {1, i, j, k} subject to
the relations i2 = −2, j2 = −5, ij = −ji = k. H is ramified precisely at the primes {5,∞}.

The class number of an order of level 3 in this algebra is 2 and the type number is also 2
(see [6], p. 153). Let Λ1 and Λ2 be two orders of level 3 representing the distinct types.
According to Lemma 1, we must then have that 2 =

∑2
i=1 hi, which means that the class

number of two-sided Λi-ideals is 1. Since Λiπ̃ is a two-sided Λi-ideal, it must mean that
Λiπ̃i is principal. By Theorem 3, the corresponding path (Γ0

i ,Γ
n
i ) is in the same orbit as

(π̃i
−1Γ0

i π̃i, π̃i
−1Γni π̃). Hence in this case E = I.

We note here that the cases for larger values of n are clearly more complicated, but it is
possible that variants of these geometric ideas will lead to recursion formulas for those cases
as well.

4. Quadratic Forms

As an application, we show how the above recursion formulas can be used to compute
representation numbers of certain quadratic forms with integer coefficients. Let Λ be an
order of level pn in H with Z-basis {e1, e2, e3, e4}. If x = x1e1 + x2e2 + x3e3 + x4e4 ∈ Λ,

then NH/Q(x) =
4∑
i=1

x2
i NH/Q(ei) +

∑
i<j

xixj TrH/Q(eiēj) is a quadratic form with coefficients

in Z. Denote by R(pk) the number of primitive representations of pk by the norm form of
H restricted to Λ; that is, solutions (x1, x2, x3, x4) ∈ Z4 of NH/Q(x) = pk with the property
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that p does not simultaneously divide all of the xi’s. Following Pays in [3], we will show that
the matrix P (k) is useful in finding primitive representations of pk by the norm form of the
algebra restricted to orders of level pn of H. The following theorem is easily established.

Theorem 5. Let Λ = Γ0 ∩ Γn be an order of level pn in H. There is a bijection between the
following two sets:

{x ∈ Λ− pΛ | NH/Q(x) = pk}/ ∼
and

{paths of length n in the same orbit as (Γ0,Γn) at distance k from (Γ0,Γn)}.
Here, the equivalence relation ∼ on Λ is defined by x ∼ y if and only if x−1y ∈ Λ×. Under
this bijection, the element x ∈ Λ corresponds to the path (x−1Γ0x , x−1Γnx).

Observe that P
(k)
1,1 is equal to the number of paths in the same orbit as (Γ0,Γn) at distance

k from (Γ0,Γn), hence R(pk) = |Λ×|P (k)
1,1 . By finding a closed form of the recursion formula

for the matrices P (k), we can compute R(pk).

Example 2.

In the example given above, H is the quaternion algebra with vector space basis {1, i, j, k}
subject to the relations i2 = −2, j2 = −5, ij = −ji = k. An order of level 3 in H is given by

Λ = Z

(
1 + j + 3k

2

)
+ Z

(
i+ 2j + k

4

)
+ Zj + 3Zk,

and the corresponding norm form is

24x2
1 + 2x2

2 + 5x2
3 + 90x2

4 + 10x1x2 + 10x1x3 + 90x1x4 + 5x2x3 + 15x2x4.

In this case we have seen that the Brandt matrices B(3k) satisfy B(3k+1) = B(3k)B(3) −
3B(3k−1)− 3B(3k). Equivalently,

∞∑
i=0

B(3k)Xk =
I + 3X

I − (B(3)− 3I)X + 3X2
.

Using this and the relations derived above one sees that a generating function for P (X) =
P (0) + P (1)X + P (2)X2 + . . . is:

P (X) =
(I + 3X)(I −X2I)

I − (P (1) − 3I)X + 3X2
.

We find P (1) = B(3) =

(
5 2
6 1

)
, hence

P (x) =


−9x5 + 7x3 − x2 + 2x+ 1

9x4 − 9x3 + 2x2 − 3x+ 1

−6x4 − 2x3 + 6x2 + 2x

9x4 − 9x3 + 2x2 − 3x+ 1

−9x4 − 3x3 + 9x2 + 3x

9x4 − 9x3 + 2x2 − 3x+ 1

−9x5 + 3x4 + 8x3 − 4x2 + x+ 1

9x4 − 9x3 + 2x2 − 3x+ 1

 .

Expanding the (1, 1) entry, we have:

P
(k)
1,1 = 1 + 5x+ 12x2 + 42x3 + 138x4 + . . . .
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Also, |Λ×| = 6, so
∞∑
k=1

R(3k)xk = 6 + 30x+ 72x2 + 252x3 + 828x4 + . . . .

Thus, there are 30 ways of representing 3 by this quadratic form, 72 ways of representing 9,
etc.
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