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1 Radices of Integers

Computational mathematics has brought awareness to the use of various bases
in representing integers. The standard for most number systems is decimal,
which is base 10, or has radix 10.1 Common examples inclue the radix for:
binary, 2; octal, 8; and hexidecimal, 16.

Definition 1.1 A positive integer r is a radix. A sequence α = (ak, . . . , a0)
is a radix r sequence if 0 ≤ ai < r when r > 1 and ai = 1 if r = 1, for all
i = 1, . . . , k. The set of all radix r sequences of integers is defined as Nyr and
is called a primitive radican of r. 2

The translation of a positive integer to a specific radix in computer science
can be done recursively as follows:

ai =
⌊
(n−

k∑

j=i+1

aj)/ri
⌋
,

where k = blogrnc. This method ensures the proper allocation of space and
takes advantage of the implicit flooring done with integer division in computers.
However this recursion runs backwards and so is potentially confussing.3

The following direct and more number theoretic recursion offers a greater
insight into the mechinisms behind a radix.

ajr
j ≡ n−

j−1∑

i=0

air
i (mod rj+1)

where each aj is restricted to the least residue class. Notice n = m·rj+
∑j−1

i=0 air
i

and (rj , rj+1) = rj so the explicit form can be given through cancelation as
aj ≡ m (mod r).

1The use of the term base is more common than radix. However due to the use of the the
terms basis and bases later, base will be avoided in favor of radix.

2The set N includes 0.
3Running backwards allows for a program to convert the radix to a reduced precision thus

is ideal for floating point situations as well.
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The process terminates when
∑j

i=0 air
i = n, which it must at some point.

Regardless of the algorithm used, the output is well-defined and unique and is
denoted as nyr. Note the length of nyr is always dlogrne and 1 when n = 0.

Definition 1.2 An non-negative integer n is said to be expressed (in the radix
r) by nyr = (ak, . . . , a0) if for all i = 1, . . . , k, 0 ≤ ai < r when r > 1 and ai = 1
when r = 1 (called a tally).

Proposition 1.3 The map (r) : Nyr → N, defined as α(r) = akrk + · · ·+ a1r +
a0, is well-defined. Furthermore ◦yr : N → Nyr defined by nyr = (ak, . . . , a0) is
the inverse map of (r), so nyr(r) = n and α(r)yr = α. 4

Typcially the sequence is denoted with the most significant figures to the
left and the least significant to the right, just as with decimal notation. The
individual coefficients ai are called r-dits, or simply radits when r is clear from
the context.

Definition 1.4 Given a set A ⊆ N, define Ayr = {nyr | n ∈ A}. Also define
ny∞ = n so that Ay∞ = A and in particlar Ny∞ = N.

Before moving on it is important to note several techniques exist to extend
the radix representation of a positive integer to its negative: simply fix a new
symbol (the minus sign) in front of the number, or for the case of more complex
systems, such as the p-adic integers, use infinite sequences. Most of these meth-
ods can be extended to the following construction but for simplicity negative
integers are ignored.

2 Radix Algorithm

The construction of a radix makes sense to other number systems as well. But
as with other principles, the development of radix does not in general follow
the integer model. The restrictions that make an integer like radix to exist
are considered but the certain useful results can be derived even with radix
representations that do not exhibit all the necessary properties.

Lemma 2.1 Given a right Z-module M and a submodule S, and an integer
r 6= 0, a ≡ b (mod S) if and only if ari ≡ bri (mod Sri) for all i ≥ 0.

Proof: a + S = b + S if and only if (a + S)ri = (b + S)ri. Furthermore
(x + S)ri = {(x + s)ri | s ∈ S} = {xri + sri | s ∈ S} = xri + Sri. Therefore
a + S = b + S if and only if ari + Sri = bri + Sri. ¤

4The notation mimicks the equation a/b · b = a as a mnemonic.
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Theorem 2.2 (Radix Algorithm) Let M be a right Z-module and S a sub-
module of M with transversal Tr(S) and of finite index r. For every element
a ∈ M there exists a unique sequence ayS = {ai|i ∈ N, ai ∈ Tr(S)} such that

a ≡
j∑

i=0

air
i (mod Srj) (1)

for all j ∈ N.

Proof: Proceed with induction. Given an element a ∈ M there exists a
unique a0 ∈ T such that a + S = a0 + S by the definition of T , thus verifying
a ≡ a0 (mod Sr0). Presume the subsequence a0, . . . , aj satisfies Equation (1),
which requires a − ∑j

i=0 air
i ∈ Srj . Thus there exists an s ∈ S such that

a − ∑j
i=0 air

i = srj . However clearly the order of srj in M/Srj+1 divides r.
Therefore there exists a t ∈ M such that s ≡ tr (mod Sr).

Once again there exists a unique aj+1 ∈ Tr(S) such that aj+1 ≡ t (mod S).
Applying Lemma-2.1 and substituting yields

aj+1r
j+1 ≡ trj+1 = srj = a−

j∑

i=0

air
i (mod Srj+1).

Therefore ayS is uniquely defined. ¤

Proposition 2.3 If an element is expressible then its expression is unique.

Proof: Suppose a is expressed by (ai)i∈N and (bi)i∈N. The transitivity of mod
equivalence infers

∑j
i=0 air

i ≡ ∑j
i=0 bir

i (mod Srj). If j = 0 clearly a0 ≡ b0

(mod S) and since both are in the transversal it follows a0 = b0. Proceeding
with induction, assume ai = bi for all i ≤ j for some non-negative integer j.
Canceling the common sum leaves aj+1r

j+1 ≡ bj+1r
j+1 (mod Srj+1), and ap-

plying Lemma-2.1 reduces the expression to aj+1 ≡ bj+1 (mod S). By the same
argument as above aj+1 = bj+1, so in fact (ai)i∈N = (bi)i∈N. ¤

When context allows, we write ayS as ayr and MyS as Myr since the integer
radix is generally of greatest interest. Traditionally the sequence derived from
the radix algorithm is written from left to write starting with the most significant
radit. Some confussion may arrise of the radix algorithm is not used to compute
the sequence.

Example 2.4 In the ring Z/4, 0 = 1 · 4. Therefore 0 = 1 · 22 + 0 · 2 + 0 · 1.
However 0y2 6= (1, 0, 0) because

1 · 22 = 4 ≡/ 0− (0 · 2 + 0 · 1) (mod 23).
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Example 2.5 Consider the radix algorithum with the chain 0EZ/r×0EZ/r×
Z/r where r > 1. The element (1, 0) ≡ (0, 0) (mod Z/r × 0) so a0 = 0. Next
(1, 0) ≡ a1r + 0 = a1r (mod 0). Therefore (1, 0) = a1r yet every element of
x ∈ Z/r×Z/r has order dividing r so (1, 0) 6= a1r for any a1 in any transversal.
Therefore Z/r × Z/r is not expressible.

Proposition 2.6 Every cyclic group is expressible by any subgroup of finite
index greater than one.

Proof: Consider the arbitrary cyclic group C = 〈g〉 and the subgroup S of finite
index r > 1 in C. Take an arbitrary element a ∈ C. By the definition of the
transversal Tr(S) there exists a unique a0 ≡ a (mod S). Assume a ≡ ∑j

i=0 air
i

(mod Srj) for all j ≤ k, with ai ∈ Tr(S), for some k and proceed by induction.
Both a and

∑k
i=0 air

i are in C so a = gn and
∑k

i=0 air
i = gm. Therefore

g(n−m) ≡ 0 (mod Srk) and since g is a generator of C it follows 〈gs〉 = B for
some s ∈ Z. Therefore rk|n−m

... hmm, requires some more work, rj could be greater than the group size.
¤

Definition 2.7 (Radix Algorithm) Let H = {Hi|i ∈ N} be an r-regular de-
scending normal series so that [Hi,Hi+1] = r for all Hi 6= 0 and H0 = G. Let
φi : {0, . . . , r} → Hi be a map such that φi(m)Hi+1 = φi(n)Hi+1 implies m = n
and for each aHi+1 there exists an n such that φi(n)Hi+1 = aH.

G γ0−−→ G/H1
γ1−−→ H1/H2

γ2−−→ · · · γi−−→ Hi/Hi+1
γi+1−−−−→ · · ·

where γi(aHi) = a− φi(ai) where φ(ai)Hi = aHi.
The radix expression of x ∈ G by H is the sequence (xi)i∈N where

xφ0(x0)−1 · · ·φj(xj)−1 ∈ Hj+1,

for all j ∈ N.

Proposition 2.8 The radix algorithm is well-defined.

Proof: When j = 0 there exists a unique x0 such that φ0(x0)H1 = xH1 which
verifies xφ0(x0)−1 ∈ H1. Assume xφ0(x0)−1 · · ·φj(xj)−1 ∈ Hj+1 for some set
of unique x0 through xj and proceed with induction.

Once again the definition of φj+1 provides for a unique xj+1 such that
φj+1(xj+1)Hj+2 = x−1φ0(x0)−1 · · ·φj(xj)−1Hj+2. Therefore x

∏j+1
i=0 φi(xi)−1 ∈

Hj+2. By induction (xi)i∈N is uniquely determined for all x ∈ G so the radix
algorithm is well-defined. ¤

Definition 2.9 A regular descending normal series is a collection H = {Hi | i ∈
I} where Hi+1 E Hi and [Hi,Hi+1] = [Hj ,Hj+1] where Hi and Hj are not 0.
A strongly regular descending normal series requires further that Hi/Hi+1

∼=
Hj/Hj+1 when once again Hi and Hj are non-trivial. The analog exists for
ascending normal series.
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Definition 2.10 Given an r-regular descending normal series H with H0 = G,
the expression of G by H is called a radix expression and r is called the radix.
If H is strongly regular then G is expressed base r.

Theorem 2.11 If H is a strongly regular descending normal series then G is
isomorphic to

∏
I G/H1 with radix multiplication.

Proof: blah. ¤

Example 2.12 Express D4 base 2.
First locate a regular descending normal series:

0 C 〈a2〉C 〈a〉C D4.

Next define the φi functions: φ0(0) = e and φ0(1) = b, φ1(0) = e and φ1(1) = a,
and finally φ2(0) = e and φ2(1) = a2. Now apply the radix algorithm to each
element. For instance:

a ≡ e = φ0(0) (mod 〈a〉),
aφ0(0)−1 = ae−1 = a ≡ a = φ1(1) (mod 〈a2〉),

aφ0(0)−1φ1(1)−1 = ae−1a−1 = e ≡ e = φ2(0) (mod 0),

so ay2 = 010. The same works with ab:

ab ≡ b = φ0(1) (mod 〈a〉),
abφ0(1)−1 = ab−1 = a ≡ a = φ1(1) (mod 〈a2〉),

abφ0(01−1φ1(1)−1 = ab−1a−1 = e ≡ e = φ2(0) (mod 0),

and therefore aby2 = 011. Notice that in the second step abφ0(1)−1 is in 〈a〉 so
in fact the evaluation is in 〈a〉/〈a2〉 not D4/〈a2〉 as required.

When completed the algorithm generates the following table uniquely identi-
fying every element.

e a a2 a3 b ab a2b a3b
D/4/〈a〉 φ0(0) φ0(0) φ0(0) φ0(0) φ0(1) φ0(1) φ0(1) φ0(1)
〈a〉/〈a2〉 φ1(0) φ1(1) φ1(0) φ1(1) φ1(0) φ1(1) φ1(0) φ1(1)
〈a2〉/0 φ2(0) φ2(0) φ2(1) φ2(1) φ2(0) φ2(0) φ2(1) φ2(1)

000 010 100 110 001 011 101 111

Notice the representation need not be unique. For instance take instead the
regular descending normal series:

H3 = 0 C H2 = 〈a2〉C H1 = {e, a2, b, a2b}C H0 = D4.
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Now define: φ0(1) = a, φ1(1) = b, and φ2(1) = a2. The radix algorithm now
generates:

e a a2 a3 b ab a2b a3b
H0/H1 φ0(0) φ0(1) φ0(0) φ0(1) φ0(0) φ0(1) φ0(0) φ0(1)
H1/H2 φ1(0) φ1(0) φ1(0) φ1(0) φ1(1) φ1(1) φ1(1) φ1(1)
H2/H3 φ2(0) φ2(0) φ2(1) φ2(1) φ2(0) φ2(0) φ2(1) φ2(1)

000 001 100 101 010 011 110 111

Notice the results are simply permutations of each other:

000 010 100 110 001 011 101 111
000 001 100 101 010 011 110 111.

Interchanging the first two rows in the table creates the other.

Proposition 2.13 If an element is expressible then its expression is unique.

Proof: Suppose a is expressed by (ai)i∈N and (bi)i∈N. The transitivity of mod-
ular equivalence infers

∏j
i=0 φi(ai) ≡

∏j
i=0 φi(bi) (mod Hj+1) for all j. If j = 0

clearly φ0(a0) ≡ φ0(b0) (mod H1) implies φ0(a0)H1 = φ0(b0)H1 so a0 = b0 by
the definition of φ0. Proceeding with induction, assume ai = bi for all i ≤ j
for some non-negative integer j. Using cancelation

∏j+1
i=0 φi(ai) ≡

∏j+1
i=0 φi(bi)

(mod Hj+2) reduces to φj+1(aj+1) ≡ φj+1(bj+1) (mod Hj+2) where once again
φj+1(aj+1) ≡ φj+1(bj+1) implies aj+1 = bj+1 by the definition of φj+1. There-
fore the expression of a is unique by induction. ¤

If G is of finite order n then the maximum length required to express any
element in G by the radix r is dlogrne. Note clearly r|n.

Example 2.14 Take · · ·EriZE · · ·ErZEZ for any r > 1. Define φi(n) = nri.
Then every element of Z is expressible.

Proposition 2.15 Given a right Z-module M and a submodule S of finite index
r, and take a ∈ M such that ayr = {ai | i ∈ N}. Let s ∈ Tr(S) be the element
such that s + S = S. The following are true:

1. if a =
∑j

i=0 air
i for some j then ak = s for all k > j;

2. 0yr = s̄;

3. if Srj = 0 for some j then ai = s for all i > j.

Proof: Take a =
∑j

i=0 air
i and let k > j. Clearly

a−
j∑

i=0

air
i = 0 = 0rk ≡ srk = akrk (mod Srk).

By Lemma-2.1, ak = s.
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Clearly 0 = 0 · 1 so condition 1 is satisfied leaving 0yS = s̄.
Suppose Srj = 0 for some j. Given that a ≡ ∑j

i=0 air
i (mod Srj) it follows

a ≡ ∑j
i=0 air

i (mod 0) so a =
∑j

i=0 air
i in M/0 ∼= M . Applying condition 1

it follows ai = s for all i > j. ¤

Selecting various representatives for the transversal generate different asso-
ciations of numbers.

Example 2.16 Takeing Tr(2Z) to equal {1, 3}, instead of {0, 1}, changes 0y2
from 0̄ to 1̄ and 1y2 from 0̄1 to 0̄33. Additionally 3y2 becomes simply 0̄3 instead
of the usual 0̄11. Thus the order of the integers are generally not preserved, with
respect the corresponding lexicographic order, by the radix algorithm.

The goal of a radix is to provide a normal form for the elements expressed
according to the radix. This requires that the representation be unique. In most
situations the ideal conditions would be a finit sequence, but sense the design
of the radix algorithm functions for all positive integers, the best condition is
to produce a sequence of finite type.

Definition 2.17 An element a is expressed by S when for some j, ai = aj for
i ≥ j and is furthermore primitive if aj = 0. M is [primitively]expressed by S
when every element of M is [primitively]expressible by S. When M is expressed
by S, the index [M : S] = r is a radix expressing M and is said to be expressible
by r.

Notice · · ·E Srj−1 E · · ·E Sr E S E R and at each step [R : Srj−1] = rj .

Proposition 2.18 Given a family of right Z-modules {Ai | i = 1, . . . , n}, ex-
pressible by r, the direct product

∏n
i=1 Ai is expressible by r.

Proof: Note
∏

Ai/
∏

Si
∼= ∏

Ai/Si. Therefore (a1, . . . , an)yr = (a1yr, . . . , anyr).
¤

Corollary 2.19 All finitely generated abelian groups are expressible.

Proof: The Fundamental Theorem of Finitely Generated Abelian Groups to-
gether with Proposition-2.15. ¤

Example 2.20 2y2 = 0̄10 and −2y2 = 0̄10. First −2 ≡ 0 (mod 2), and next
−2 − 0 = −2 ≡ 2 = 1 · 2 (mod 4). Now suppose −2 ≡ ∑j

i=1 2i (mod 2j+1)
for some j. Then −2 −∑j

i=1 2i ≡ 0 (mod 2j+1) and so −2 −∑j
i=1 2i ≡ 2j+1

(mod 2j+2)
−2− (2 + 0) ≡ −4 ≡ 4 (mod 8) -2-2-4=-8
The rational numbers are not expressible.
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Notice all primitive expressions are weak direct product (or equivalently a
polynomial when M is a ring) with coefficients in Tr(S). Since Tr(S) is a
traversal for M/Tr(S) it follows ayS maps a into

∏
NM/S. In particular if M

is primitively expressed by S then R is embedded in
∑
NR/S. Considering ayS

as a polynomial, even if multiplication is not defined, it is possible to consider
substituting r for x in the polynomial. Thus if ayS = (a0, . . . , ak, 0, . . . ) then

ayS(r) =
k∑

i=0

air
i

However

a ≡
j∑

i=1

air
i−1 (mod Srj−1)

for all j ∈ Z+ so for all j > k, aj ≡ 0 so aj = 0 since 0 is the unique represen-
tative for the coset S, in T . In this way

a ≡
k∑

i=1

air
i = ayS(r) (mod Srj)

for all j > k, so ayS(r) = a.

Proposition 2.21 R is primitively expressed by S if and only if

R ∼=
∑

N
R/S ∼= (R/S)[x].

The substitution map allows for a way to sign the elements of M . Take the
positive elements to be P = MyS(r).

Definition 2.22 (Algebraic Log) Suppose some subset A of M is expressible
by r. The algebraic log base r of a ∈ A is defined as the length minus 1 of ayr
and is denoted alogra.

alogr
ayn =

j∑

i=0

φ(ai)
rj−i

where φ(ai) = 0 when ai = 0 and 1 everywhere else.

Therefore alogr100 = 2, alogr101 = 2 + 1/r2, etc. Usually logbx is defined
as the unique y such that by = x. Here alogr is similar but can best be thought
of as a map from M to the rationals. Unlike log, alogr0 is artificially assigned
the value 0. For any elements that cannot be expressed by r the alog is not
defined, recall the largest set of unexpressables are called negatives.
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