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1 Regular Tree Coordinates

In order to create and manipulate the tree and its paths we need to establish
a system for representing these objects as software elements. We do this by
establishing a coordinate system for an abstract regular tree and defining the
required formulas with respect to this coordinate system. Fix a positive integer
n which will result in the production of an (n + 1)-regular tree.1

Definition 1.1 Given (a, b) and (c, d) ∈ N2, (a, b) ∼ (c, d) when a = c and if
a 6= 0 then also b ≡ d (mod Ω(a)), where Ω(a) = (n + 1)na−1.

Notice that this functions equivalently on the set N× Z.

Proposition 1.2 The relation ∼ is an equivalence relation on N2.

Proof: The relation is reduced to simple equality whenever any first com-
ponent is zero. Therefore suppose the first component is not zero.

First a = a and b ≡ b (mod Ω(a)) therefore (a, b) ∼ (a, b). Next given
(a, b) ∼ (c, d) it follows a = c and b ≡ d (mod Ω(a)) Therefore c = a and d ≡ b

1For compatibility with software applications we assume 0 ∈ N.
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(mod Ω(c)) and so (c, d) ∼ (a, b). Finally suppose (a, b) ∼ (c, d) ∼ (e, f). Then
a = c = e as well as b ≡ d ≡ f (mod Ω(a)), therefore (a, b) ∼ (e, f). ¤
We denote each equivalence class as [a, b] and refer to it as a vertex.

Definition 1.3 The shift down operator acts on the vertices as follows

k ↓ [a, b] =
{ [

a− k,
⌊

b
nk

⌋]
0 ≤ k < a

[0, 0] a ≤ k.

Proposition 1.4 The 〈N, +〉 acts on N2/∼ by ↓.

Proof: First we must ensure that ↓ is well-defined. Let [a, b] ∈ N2/∼ and
also let c ≡ b (mod Ω(a)). If a ≤ k then clearly k ↓ [a, b] = [0, 0] = k ↓ [c, d].
Now suppose 0 ≤ k < a. Utilizing the division algorithm we let b = mΩ(a) + r
where 0 ≤ r < Ω(a). Therefore

⌊
b

nk

⌋ ≡
⌊

mΩ(a)+r
nk

⌋
(mod Ω(a− k))

≡ m(n + 1)na−k−1 +
⌊

r
nk

⌋
≡ mΩ(a− k) +

⌊
r

nk

⌋
≡ ⌊

r
nk

⌋
.

Since r ≡ b ≡ c (mod Ω(a)) it follows k ↓ [a, b] = k ↓ [a, c] and so ↓ is well-
defined for all k ∈ N and [a, b] ∈ N2/∼.

We see the first action axiom satisfied with a straight forward application
of the definition: 0 ↓ [a, b] = [a − 0, b b

1c] = [a, b]. Now consider j ↓ (k ↓ [a, b]).
Since a − k ≤ j if and only if a ≤ j + k then clearly j ↓ (k ↓ [a, b]) = [0, 0] =
(j + k) ↓ [a, b]. Therefore suppose 0 ≤ j + k < a. Once again by the division
algorithm we let b = mnj+k + r where 0 ≤ r < nj+k. Therefore

⌊bb/nkc
nj

⌋
=

⌊b(mnj+k + r)/nkc
nj

⌋
=

⌊
mnj + br/nkc

nj

⌋
=

⌊
m +

br/nkc
nj

⌋

= m +
⌊br/nkc

nj

⌋
. (1)

Now we also note that 0 ≤ r/nk < nj so 0 ≤ br/nkc < nj and continuing
0 ≤ br/nkc/nj < 1. Therefore bbr/nkc/njc = 0. So we concluded

⌊bb/nkc/nj
⌋

= m = bb/nj+kc.

Finally we confirm the second action axiom.

j ↓ (k ↓ [a, b]) = j ↓ ([a− k, bb/nkc])
=

[
a− k − j,

⌊bb/nkc/nj
⌋]

= [a− (j + k), bb/nj+kc] by (1)
= (j + k) ↓ [a, b].

Therefore 〈N, +〉 together with ↓ acts on N2/∼. ¤
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The shift down operator is a monoid action so orbits are never disjoint and the
action does not partition the set. However the induced structure is still useful
and relates directly to certain counting theorems. With this device in hand we
can now define a partial ordering on the partitioned set which will result in a
regular tree structure.

Definition 1.5 Given α, β ∈ N2/∼, α ≤ β if and only if there exists a k ∈ N
such that α = (k ↓)β. Equivalently we may say α is in the orbit of β.

Note therefore [0, 0] is the least element of the partition and that, unless α =
[0, 0], the k is unique. This is summed up in the following lemma.

Lemma 1.6 The set of all lower bounds of a vertex forms a finite chain, specif-
ically

[0, 0] ≤ ((a− 1) ↓)[a, b] ≤ · · · ≤↓ [a, b] ≤ [a, b].

Proof: Let [a, b] ∈ N2/∼. Consider the orbit of [a, b], N ↓ [a, b]. Clearly the
orbit contains only lower bounds of [a, b] and ↓ is well-defined it also follows all
lower bounds are elements of the orbit. By induction on a with an arbitrary b
we see the elements of the orbit do indeed form a chain of length a. ¤

Theorem 1.7 The graph of the partial ordering of N2/∼ is an (n + 1)-regular
tree. Therefore we take a connection between two vertices α and β to exist when
either α =↓ β or β =↓ α.

Proof: Given that ↓ [0, 0] = [0, 0], all vertices connected to [0, 0] must be of
the form [1, b]. Since ↓ [1, b] = [0, 0] all n+1 vertices of that form are connected
to [0, 0].

Given any vertex [a, b] 6= [0, 0] there exists a distinct vertex ↓ [a, b], which by
definition is connected to [a, b]. For all vertices [a + 1, c] such that ↓ [a + 1, c] =
[a, b] we once again apply the division algorithm and note

⌊ c

n

⌋
=

⌊
mn + r

n

⌋
= m

and by assumption we know b ≡ m (mod (n + 1)na−1). Therefore all vertices
connected to [a, b] from above are of the form [a + 1, bn + r], 0 ≤ r < n. These
vertices are clearly n distinct vertices since no two are equivalent mod (n+1)na.
Therefore there are exactly n +1 distinct vertices connected to [a, b]. Therefore
all vertices are connected to exactly n + 1 distinct vertices so the graph of the
partial ordering is an (n + 1)-regular tree. ¤

The importance of this theorem lies in its simple generation and representa-
tion.2 Effectively this specific (n + 1)-regular tree can be used as a coordinate

2In computerized integer arithmetic, the division operation automatically floors the result
and the modular arithmetic is equally efficient. Additionally the vertices can easily be iterated
over and traversed with simple index loops.
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system for any (n + 1)-regular tree. The graph of this tree is easily drawn by
considering a vertex [a, b] as a form of polar coordinates. The first coordinate
representing the radius, the second the fraction of rotation.3

2 Distance

Lemma 1.6 ensures us that the elements of the tree have lower bounds. An
important extension to this result is the existence of greatest lower bounds. We
denote the greatest lower bound between two vertices α and β as α ⇓ β.

Proposition 2.1 Every non-empty set of vertices has a greatest lower bound.

Proof: Let S ⊆ N2/∼ such that S 6= ∅. We know [0, 0] ∈ ⋂
α∈S Nα so the

intersection is non-empty. Additionally each Nα is a finite chain by Lemma 1.6
and so their intersection is a finite subchain of all the chains. Therefore there
exists a top element δ and δ is the greatest lower bound to the arbitrary set S.
¤
Notice that alternatively we may think of the greatest lower bounds in terms of
orbits. The intersection of orbits is again an orbit and furthermore Nα ∩ Nβ =
N(α ⇓ β). From this we can compute the greatest lower bound between two
vertices by traversing the orbits with the following algorithm.

⇓: (N2
/∼ : [a, b], [c, d]) : N2

/∼
begin

Let γ, δ ∈ N2
/∼;

// Select the vertex γ to be the closest to [0,0] for efficiency.
if (a ≤ c) then
begin

γ ← [a, b];
δ ← [c, d];

end
else
begin

γ ← [c, d];
δ ← [a, b];

end
// Traverse down the chain for γ until it intersects the chain for δ.
while (γ � δ) do

γ ←↓ γ;

// The current γ is the greatest lower bound.
return γ;

end

We turn our attention now to the notion of distance within the tree.

Definition 2.2 Let α = [a, b] and β = [c, d] be two comparable vertices. The
distance ∂(α, β) is defined as |a− c|.

3Specifically the map [a, b] 7→ (a cos θ, a sin θ) where θ = 2π
(n+1)na−1 (b − 1

n
) serves to map

the coordinates to the Cartesian plane.
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Definition 2.3 The distance between vertices α and β is the sum of their re-
spective distances to the greatest lower bound. That is,

d(α, β) = ∂(α, α ⇓ β) + ∂(α ⇓ β, β).

With orbits we can equivalently define d(Nα,Nβ) = Nα⊕Nβ and we observe that
d(α, β) = |d(Nα,Nβ)|. Since the greatest lower bound is always comparable with
both α and β, it follows this generalized definition of distance is well-defined.

3 Shift Toward α Operators

In the previous sections the introduction of the shift down operator immedi-
ately determined an action on the vertices of N2/∼ that serves to shift elements
towards the element [0, 0]. The limitation lies in the single direction of this
traversal. Inorder to provide a mechinism to traverse between any two vertices,
an extension of the shift down operator is created.

Definition 3.1 Let α and β ∈ N2/∼. Define the product

αkβ =





k ↓ β 0 ≤ k ≤ d(α ⇓ β, β),
(d(α, β)− k) ↓ α d(α ⇓ β, β) < k < d(α, β),
α d(α, β) ≤ k.

to be the k-shift towards α operator.

We notice that [0, 0]kα = k ↓ α.

Proposition 3.2 〈N,+〉 acts on N2/∼ by ↓α for all α ∈ N2/∼.

Proof: Since α ⇓ β ≤ β it follows ↓α is defined on the entire domain.
Furthermore whenever α 6= β and α ⇓ β = β it follows α ¤

From this generalization we may now consider any vertex in the grap to be
the center of its corresponding tree. We can equivalantly generalize the concepts
of greatest lower bounds and distance to refer to given center. In general we
assume the center to be [0, 0] unless specified otherwise.

4 Translation

Definition 4.1 Define the funtion u : N2/∼ → N2/∼ as follows.
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u(N2
/∼ : [a, b]) : N2

/∼
begin

// Traverse up the chain of lower bounds
// to determine the unit translation at each step.
if (a = 0) then

return [0,0];

else
begin

// Note that this will always be a unit vertex.
[1, θ] ← ((a− 1) ↓)[a, b];
// Iterate up the lower bounds until the [a,b] is reached.
∀ i ∈ {2, . . . , a}
begin

θ ← θ +
j

b

n(a−i)

k
;

[y, z] ← ((αr − i) ↓)[a, b];
r ≡ y mod n; // 0 ≤ r < n.
θ ← θ + r;

end
// Return the last unit of translation.
return [1, θ];

end

end

As is fairly clear, only the second coordinate is required and as such this
algorithm should be optimized by inlining the shift down operator and omiting
the unused computations. However this form better exemplifies the design of
the alogrithm. Additionally the full decomposition of a given element is clearly
obtained by storing the result [1, θ] at the bottom of each loop.4 The reader
will note the u is well-defined since each it is based completely on the chain of
lower bounds of an element which is unique.

We are now prepared to define a general addition for all elements of the tree.
The u function will provide us with the decomposition required.

Definition 4.2 Let [a, b] ∈ N2/∼ where [a, b] 6= [0, 0]. Also let u([a, b]) = [1, j].
The sum of [a, b] and an arbitray unit [1, k] is defined as

[a, b] + [1, k] =
{

[a + 1, bn + k − j]
↓ [a, b] if j + 1 ≡ k (mod n + 1)

Additionally define α + 0 = 0 + α = α.

Definition 4.3 The decomposition of an element α ∈ N2/∼ is the image of u
over the ordered sequence of chain of all lower bounds of α. We denote the
decomposition

U(α) = {u(γ)| γ = 0, . . . , α}.
4Actual implementations should provide such an additional algorithm for efficiency. How-

ever for simplicity this article simply calls the u function iteritively with the same net effect.
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Proposition 4.4 The decomposition of an element is unique.

Proof: The chain of lower bounds of an element is unique and u is a well-
defined function thus U(α) is unique. ¤

Definition 4.5 Given [a, b], [c, d] ∈ N2/∼ the define their sum as

[a, b] + [c, d] =
∑

γ∈U([a,b])∪U([c,d])

γ.

An important strong caution should be made about the properties of this oper-
ation. First, inverses exist for both sides, however they are both one sided and
unique only to that side. There is a unique two sided identity [0, 0]. In general
sums are not commutative nor are they associative. Therefore special care must
be taken when using the addition to ensure no rule is assumed which may not
apply to the context.

5 Path Generation

Proposition 5.1

Pm
0 (τ) = Um(τ) ∪


 ⋃

1≤k≤m

(
Um((k ↓)τ)− Um−k(τ)

)



where U j(τ) is the set of all elements a distance m from τ that are also greater
than or equal to τ .

Therefore in order to generate Pm
0 (τ) we need only define an algorithm for U j(τ)

which we do as follows.

U j(N2
/∼ : [a, b]) : PN2

/∼
begin

if (j = 0) then
return {[a,b]};

if (a = 0) then
return {[j, i] | 0 ≤ i < (n + 1)nj−1};

else
return {[a + j, bnj + i] | 0 ≤ i < nj};

end

Finally the generation of the set for arbitrary length paths follows from the
following formula.

Proposition 5.2 Pm
l (τ) = {(α, β) | α ∈ Pm

0 (τ), β ∈ P l
0(α) and d(τ, β) ≤ m}.
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6 Polygonization Method

We take up the case for paths of length k > 1. We begin by defining a new
graph.

Definition 6.1 Let T be a (directed)tree. Define the graph T (k) as the graph
formed on the vertices of T where an (directed)edge of T (k) exists between to
vertices if there exists a (directed)path connecting the vertices of length k in T .

Note T (0) is the set of vertices of T and T (1) = T .

Proposition 6.2 Given any tree T , T (n) is well-defined.

Proof: Since T is a tree, given any two vertices in the tree there exists a
unique path connecting the vertices. Therefore there exists a unique distance
between the vertices. Hence the edges of T (n) are uniquely defined and thus
well-defined. ¤

Definition 6.3 Given a (directed)tree T , the induced graph T (n) is said to be
closed if every edge belongs to a (directed)cycle.

Lemma 6.4 If T is an n-regular (directed)tree, with m > 1, then T (k) is Ω(k)-
regular.

Proof: Let k = 1 and let u be a vertex in T . T is n-regular therefore there
are n vertices adjacent to u which are therefore a distance k from u. Therefore
n(n− 1)k−1 = n(n− 1)0 = n = d(k).

Now suppose d(k) = n(n − 1)k−1 for some k. Attached to each vertex a
distance k from u are m vertices. Since paths in a tree are unique the path
connecting a vertex v with u can only contain one vertex adjacent to v. There
are therefore m− 1 vertices adjacent to v not contained in any path from u to
v for all vertices v a distance k from u. These vertices are therefore a distance
k + 1 from u. Moreover every vertex a distance k + 1 from u must be adjacent
to one that is k units form u therefore these are in fact all vertices at a distance
k + 1 from u. Since there are n − 1 such vertices adjacent to each of the d(k)
vertices there is a total of

d(k)(n− 1) = n(n− 1)k−1(n− 1) = n(n− 1)k = d(k + 1).

So we conclude by induction that d(k) = n(n− 1)k−1 for all k. ¤

Theorem 6.5 Let T be an n-regular tree, for n > 2. T (k) is closed for all
k > 1.
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Proof: By Lemma 6.4 we know T (k) is Ω(k)-regular. Since k > 1 there
are at least two edges in this path. Since n > 2 it also follows Ω(k) > 2 and
therefore there are more than two paths of length k connected to each vertex.

Let π = (u0, e1, u1, . . . , uk−1, ek, uk) be a path in T . Also let {fi} be a
sequence of edges adjacent to u1 not including e2 and also Now take a path π
and select an edge f in T so that f 6= ek but is adjacent to uk−1. Define the
following function:

w1(π, f1) = (uk, ek, uk−1, . . . , u1, f1, u)
wn+1(π, fn+1) = w1(wn(π, fn), fn+1)

If we now define the recursive function w2(π, f − 2)take {w(π, e)}
Now we create an algorithm which while traverse the edges of a cycle in

T (k). We select a vertex u and begin by walking along a path to a vertex a
distance n from u. Our resulting path contains the edges (e1, . . . , ek). This
path corresponds uniquely to an edge E1 in T (k). Now we walk back along
the path until we reach the last edge in the path, at which point we walk out
on an edge ē1 that we have not yet traversed. Thus the resulting new path is
(ek, . . . , e2, ē1). This is now a new edge E2 in T (k). We now repeat this process
until we end on the edge e1 collecting the induced edges of T (k) along the way.
As a result we have a closed walk in T corresponding to a closed path in T (k)

since no two induced edges are repeated. However a closed path is simply a
cycle in T (k). Since our choice of E1 was arbitrary it follows given any edge in
T (k) we can apply this algorithm to generate the a cycle two which E1 exists.
So we conclude T (k) is closed. ¤

Corollary 6.6 The girth of T (k) is 4 when k is odd and 3 when k is even.

7 Stablity

Definition 7.1 Given the graph Pm
k (τ) we define the graph Gm

k (τ) as the graph
induced on the vertices V = {α, β | (α, β) ∈ Pm

k (τ)} with oriented edges between
vertices connected by a oriented path in Pm

k (τ).

Definition 7.2 Given a vertex α we define α ? β to be the coordinate of α with
respect to the graph centered at β.

Definition 7.3 Given a path ρ = (α, β) define the base of ρ to be Yρ = α ⇓ β.

It is now possible to explain stablity in terms of the behavior of the successive
iterations of the graphs.

Theorem 7.4 Gm
k (τ) decomposes into n copies of Gm−1

k (τ) for all m > k + 1.

Proof: Let m > k + 1 and center the graph at τ0.
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Now we define the following map:

∆ : Pm
k (τ) → Pm−1

k (τ) : (ρ0, ρk) 7→ ((ρ0 ? Yρ)? ↓ (Yρ)), ρk ? Yρ+ ↓ (Yρ))).

First we must show ∆ to be well-defined. Given that ¤

Lemma 7.5 The set Pm
0 (τ) is the set of all origins of paths in Pm

k (τ).

Theorem 7.6 For all positive odd k, Gm
k (τ) is bipartite. Furthermore the ori-

entation of the graph follows from one partite to the other exclusively. We term
the partites source and sink appropriately.

Proof: By Lemma 7.5 it follows X = Pm
0 (τ0) is the set of all origins of

Pm
k (τ). Therefore given any two vertices α, β ∈ X consider the path p = (α, β).

The length of p is defined as d(α, β) = d(α, α ⇓ β) + d(α ⇓ β, β). We center the
graph at τ0 and therefore require that d(α, [0, 0]) = d(β, [0, 0]) = m. Therefore
len(p) = |m − j| + |j − m| = m − j + m − j = 2 ∗ (m − j), where j is the
distance of α ⇓ β to [0, 0]. Therefore the length of p is even and therefore not
included in Pm

k (τ) since k is odd. Since Pm
0 (τ0) 6= ∅ and by the above argument

all elements of X are independent, it follows X is independent in Gm
k (τ).

Now we consider Y = V (Gm
k )\X. Since Pm

k (τ) 6= ∅ and no paths exist
between vertices in X it follows Y 6= ∅. Consider then a path p between two
vertices in Y . Since all origins of paths of Pm

k (τ) are in X and Y ∩ X = ∅ it
follows p /∈ Pm

k (τ) and therefore Y is independent in Gm
k (τ).

Finally all paths in Pm
k (τ) begin in X and end in Y by design so we conlcude

Gm
k (τ) is the oriented bipartite graph between the independent sets X and Y .

¤
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