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Counting to the Octonions

Our first experience in mathematics is to count. So the numbers 1, 2, 3, . . . have
the right to be called natural. Addition follows soon after as a means to explain
how a count to five can always we be accomplished by counting to three and then
counting two more. Problem solving begins with the introduction of variables.
When is there an x for which 3+x = 5? Subtraction and negative numbers make
an appearance both because they help us understand concepts such as debt and
also for the simple usefulness in solving equations: x + 2 = 5 so also x = 5− 2.
By this point we have developed the integers. Indeed, multiplication seems
obvious as a shortcut to adding up the same number several times. Indeed, we
go often say “three times five”. As with addition, the invention of multiplication
introduces problems where an inverse process would be helpful, which we do by
inventing division. Thus 3x = 15 is solved by dividing x = 15÷ 3. We also find
direct value in understanding the implied new numbers 1/3, etc. so it is not too
difficult to accept fractions as numbers.

Powers mimic the path from addition to multiplication in that powers are
used as a short-hand for multiplying the same number many times, e.g. 34 =
3 ·3 ·3 ·3. So defined, exponents make sense only for natural numbers. However,
we soon discover some sensible patterns including:

an+m = anam (1)
anm = (an)m. (2)

This suggests the logical meaning for a−1 should be whatever number has the
property that ana−1 = an−1. The solution is to set a−1 = 1/a and along with
that a0 = 1. Now we have exponent with integer powers. Next up we consider
fractional powers. Here a = a1 = am/m = (a1/m)m is the guide. We notice that
the meaning of a1/m is a solution to xm = a. Therefore, to introduce fractional
powers is the same as introducing solutions to xm = a. Unfortunately, these
solutions are not always within our current number rational number system.

Theorem 0.0.1. There is no rational number x such that x2 = 2.

Proof. Suppose the claim is wrong. It would mean there are integers a and b

such that
(

a
b

)2 = 2. We know that fraction can be reduced until a and b have no
common multiples, save ±1, and so we assume that is the case. Now we know
2b2 = a2. As 2 is prime, 2 divides a2 (i.e. a2 is even). Thus 2 must also divide
a (i.e. a is even). Since a = 2k for some integer k it follows that 2b2 = a2 = 4k
so that b2 = 2k. This forces b to be even. Now both a and b have 2 as a factor.
We know this is not the case. This contradiction implies our lone assumption
is not correct, that is, 2 is not the square of a rational number.

We are capable of creating new numbers which extend the rationals to in-
clude a solution to the equation x2 = 2, and we typically call this number

√
2,

though it is not unique as −
√

2 is also a solution. However, that process will
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ultimately waste our time as with a simple modification we encounter an infinite
diversity of equations without rational solutions.

Lemma 0.0.2 (Euclid’s Lemma). If p is a prime and a and b are integers such
that ab is multiple of p, then either a is a multiple of p or b is a multiple of p.

Using Euclid’s Lemma we may prove the following as well.

Corollary 0.0.3. For every positive integer m and every prime p, the equation
xm = p has no rational solutions.

Therefore to continue our construction of necessary numbers we need a dif-
ferent inspiration. Through the Pythagorean Theorem we recognize that a right
triangle with two sides of length 1 has a hypoteneus of length

√
2 and so the

existence of
√

2 is unavoidable in geometry. So we should think about numbers
not only as consequences of solving algebraic equations but also as lengths in
geometry and so discover a method to model all numbers.

So we pause and consider what length should require. First, every natural
number n already represents a length so |n| = n for natural numbers. If we
think of negatives solely as imposing direction then |−n| = n and |0| = 0. If we
double an integer it doubles in length, and so on, so in general |n ·m| = |n| · |m|.
Finally, if the lengths of triangles are to be considered then the hypoteneus of
a triangle has a length shorter than the sum of the other two sides and that
explains why |m + n| ≤ |n| + |m|. So we take those three observations about
length to be the assumptions we require of all numbers.

The existence of length enables us to consider approximations of the numbers
we are after using ones we already have. Our experience with calculators makes
this easy: we can zoom into the graph of y = x2 − 2 as much as we wish and
see the ever improved estimate for

√
2. This leads to:

√
2 = 1.4142 · · · = 100 + 4 · 10−1 + 1 · 10−2 + 4 · 10−3 + 2 · 10−4 + · · ·

and this sequence of digits never settles into a repeating pattern (otherwise it
would be rational). Eventually all the roots we considered above are described
in this way.

It takes a great deal of work to show that every root of the form xm = p,
for p a prime, occurs as a decimal number. This is commonly solved using
Newton’s method in Calculus. Regardless of the precise method used all such
proofs depend in some way on the results about continuous functions, for exam-
ple, the Intermediate Value Theorem. Because of that it is often claimed that
Algebra depends on Calculus. While this perspective has some merit there is an
error. When we create decimal numbers we are creating many many numbers
which are not strictly necessary for algebra (though they are certainly crucial
for geometry). These are known as transcendental numbers and they include
numbers such as π and e. If we restrict attention to just the ‘algebraic’ numbers
we no longer need calculus to make progress. However, that would then require
we go back the tedious method of extending the numbers with each new root
one by one. So this is a Pyrrhic victory if it is a victory at all.

Finally, it has not escaped our notice that x2 + 1 = 0 has no solution as a
decimal number. For if x is a decimal number then x2 ≥ 0 and so x2 + 1 > 0.
For this equation to have a solution thus requires yet more numbers, numbers
that include i =

√
−1, and as seen in the quadratic formula:

ax2 + bx + c = 0 ⇒ x =
−b

2a
±
√

b2 − 4ac

2a
=

{
−b
2a ±

√
b2−4ac
2a b2 ≥ 4ac

−b
2a ±

√
4ac−b2

2a i b2 < 4ac.
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At this point we have created the complex numbers C, the real numbers R, the
rational numbers Q, the integers Z, and each of these is demanded by our need
to count with the natural numbers N.

Theorem 0.0.4 (Gauss’ Fundamental Theorem of Algebra). For all natural
numbers n and all complex numbers α0, α1, . . . , αn, there are n complex numbers
z1, . . . , zn unique to the αi such that

αnxn + αn−1x
n−1 + · · ·+ α1x

1 + α0 = αn(x− z1)(x− z2) · · · (x− zn).

In particular, each zi is root of the polynomial.

Gauss’ theorem is called the Fundamental Theorem of Algebra because it
has a significant and definitive conclusion to the methods of classical algebra of
polynomials. Yet, algebra at the time of Gauss was about to change completely
owing in large part to his own work and also to the work of two young an tragic
figures: Abel and Galois.

It was already evident to Lagrange that complex numbers would be sufficient
to explain the roots of polynomials up to degree 4. However, Lagrange had dis-
covered that his method was not capable of producing the roots of polynomials
of degree 5. The tools of his day were largely Calculus – rather Analysis as we
now describe it. Finally, using Analysis Abel finally proved that Lagrange and
others were of the right intuition.

Theorem 0.0.5 (Abel’s Unsolvability of the Quintic). There is no “radical
formula”, (a formula involving only addition, multiplication, and the taking of
roots) which describes the roots of a polynomial of degree five in terms of its
complex coefficients.

So although Gauss had proved the complex numbers have all the roots,
Abel’s result explained that it was impossible to describe what the roots truly
are in terms of formulas such as the quadratic formula does for quadratic poly-
nomials. He had sent his proof the Cauchy – the inventor of Analysis (modern
calculus) but that failed to secure Abel the notice he deserved and he died
shortly after in poverty. However impressive, Abel’s proof is no longer con-
sidered. In its place is a nearly contemporary solution by Galois. The reason
Galois’ proof survives is that it gave a convincing and versatile process by which
to understand which polynomials have no solution by radicals.

Theorem 0.0.6 (Galois’ Unsolvability Criteria). A polynomial has a radical
formula for its roots if, and only if, there is a sequence of extensions of numbers
having at each stage all the roots of an polynomial that divides the original.

We later come to name these extensions normal extensions and they include
examples like adjoining

√
2 to the rationals, since that also adjoins −

√
2 so it

factors x2−2 completely. However, adjoint 3
√

2 is not such an extension because

x3 − 2 = (x− 3
√

2)(x2 + ax + b)

does not completely factor with those numbers.
Having learned to accept and create new numbers with such range we should

ask, why stop here?
Algebra and geometry are amongst the earliest pillars of mathematics ap-

pearing long before Calculus, Set Theory, Graph Theory, Computer Science,
etc. This is perhaps because they address two fundamental problems. Algebra
is used to solve for unknown quantities whereas geometry is used to measure
shapes. To do such mathematics demands numbers with beneficial properties.
The standout properties include that equations such as 3 + x = 5 and 3x = 15
have a single solution. So we expect numbers α, β, . . . will satisfy:
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• there is a unique x such that α + x = β, and

• if α 6= 0 then there is a unique x such that αx = β.

In making numbers that get after these two properties we might need to include
some numbers we were not expecting, e.g.: 5 + x = 3 requiring us to create
−2 (which is not a number used to count or measure). Hence, to make sense
alongside of geometry we need each number α have a magnitude |α| which is
once more a number we recognize as a measurement, for example, |−2| becomes
2 which is something we can count and measure. We will also need to compare
one magnitude with another to get concepts of length and distance. So we need
exactly one number of no length.

• |α| = 0 if, and only if, α = 0.

To tie in with algebra, we should be able to compare the length of addition and
multiplication as well. Indeed, formulas for area explain how this might be done.
For instance area of a rectangle is length times width. The formulas might also
be modified by constants, e.g. the area of a triangle is only 1/2 length times
height, and the area of a circle is the radius times the radius times the constant
π. The essential property is captured as follows: the magnitude of a product is
a product of magnitudes, or in symbols:

• |αβ| = |α||β|.

One final demand of magnitude is we can compare the length of a sum of
numbers to the their individual lengths. For instance, in a triangle the sum of
two sides cannot be longer than the third. So we might consider the triangle
inequality:

• |α + β| ≤ |α|+ |β|.

There are few technical glitches in what we have written so far. For example
we used 0 as a number without explaining what it is (whatever it is at least it
is the unique solution to α + x = α and also the unique number of magnitude
0). Such issues can all be addressed but the central issue comes down this:

What are the numbers that work as just described?

The answer may surprise us. For even though we are comfortable and familiar
with decimal numbers and possibly aware of imaginary numbers, that is not the
answer. In fact the answer is 8 times larger than decimal numbers (in that they
would take an 8 dimensional universe to draw). They are called Octonions. To
reach them we need to start from the beginning.

C R Q Z N

√
−1

√
2 1

2 −1 1

Figure 1: On the top we see how the classic sets of real numbers are nested; on
the bottom we see an element in each greater set that shows why the sets are
not all the same.
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Motivation

In this chapter we will introduce many of the fundamental examples of opera-
tions on sets. Operations include familiar ideas such as adding number, com-
posing functions, and subtracting matrices. We will also see they explain other
concepts such as the numbers 0 and 1 as well as negatives and inverses. There
are even operators that take three number or matrices and return just one.

There are too many operations to handle each in detail, but there is tremen-
dous value in comparing one family of operations against another. Thus our list
is rather longer than might be found in traditional settings. Our taxonomy will
include semigroups, monoids, groups, loops, rings, fields, and semifields. This
list contains superstars and runts and we accordingly give more attention to the
stars. To lay the foundation that allows us to study each of these efficiently
and uniformly we review some elements of Set Theory introduce the concepts
of Model Theory and Universal Algebra as they pertains to defining varieties of
algebraic operations.

1.1 Sets and classes
Further Reading: Jacobson
§0.1-0.2 To start, a set is a collection of items, objects, substance, etc. For instance,

“the set of all cars” or “the set of all integers”. We speak of sets as containing
other things, such as “the set of all cars contains the Delorean” or “the integers
Z contain 0” and we write 0 ∈ Z. Some sets will not contain anything, we call
those empty. We will see later that the empty sets, much like the Delorean, is a
rare object indeed (more in Exercise 2.1.1). We also have a related concept of a
class, which to us will mean a property, for instance, “the class of cars that get
40 miles per gallon on the highway.”

Many classes actually describe sets, for instance there is a set of all cars
that get 40 miles per gallon on the highway. However, there will be cases were
a class does not describe a set. As we might expect, the difference occurs
once we become more specific about what we want sets to mean. One of the
specifics is whether or not a set can list itself as a member. This makes sense
in some contexts, for example, a book can contain other books – for example
The Complete Works of William Shakespeare. Yet, it is not sensible to expect a
book to contain itself because if it did attempt this feat it would be an unending
process. However, some would argue that self-containment is not so impossible
and point to examples like a house of mirrors which reflects the same image over
and over forever getting smaller and smaller.

Theorem 1.1.1 (Russell’s Paradox). There is no set of all sets that do not
contain themselves. In particular, there is a class that has no associated set.

Proof. Suppose S is the set of all sets that do not contain themselves. We have
made no rule about whether or not a set can contain itself and we can either
have S ∈ S or S /∈ S. But only one of these can be true and so we must decide.

If S ∈ S then S is a set that does not contain itself (by the definition of what
it means to be in S). However, this fights the assumption that S ∈ S. So we
are left to conclude that S /∈ S. But in that case S is set that does not contain
itself and so S ∈ S. That contradicts the conclusion that S /∈ S.

The result is that our very first assumption must be false. Hence we cannot
suppose that there is a set of all sets that do not contain themselves (as we did
in our first line of our proof).

For the final claim, notice “all sets that do not contain themselves” is a
property and so there is a class here which is not associated to a set.
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Whatever one’s personal perspective, Russell’s Paradox makes it clear that
there are problems with sets containing themselves and these problems are not
simply that we enter an infinite feedback loop. Rather logic itself does not
allow us to do this unless we are exceptionally careful with our definitions. The
simplest solution is the one taken by most mathematicians: we simply do not
allow sets to contain themselves. Classes on other hand do not actually contain
anything, we just use that vocabulary with classes because it is convenient.

We will often attempt to treat sets and classes as the same because the argu-
ments we make with sets and classes often have identical logical underpinnings.
For example, we can talk of the union of sets A and B, denoted A ∪ B, which
means the collection of elements that come from A or B. Of course the word or
can also be used to combine two properties: the class of all pigs or the class of
all donkeys. Hence, it makes sense to think of this as the union of the class of
all pigs and the class of all donkeys. This way, if a class does give rise to a set
then we have no need to argue with new vocabulary. Notice intersections rely
solely on the word and and so we can intersect both sets and classes without
harm. Finally, we can speak of “an element of a class” and here we simply mean
the property of the class is satisfied by the candidate element. Because of the
overlap in vocabulary and meaning we will find that many definitions for sets
also make sense for classes, for instance, the notion of a function between sets
leads to a notion of functions between classes as well.

The words ‘collection’ and ‘property’ are left undefined purposefully but they
can be given a more rigorous treatment. Tame introductions include Tarski’s
Introduction to Logic, Dover Publications Inc., New York, and Halmos’ Naive
Set Theory, Springer, New York. Even so, those works will leave certain terms
undefined as well. We should not think of this as a failure in mathematics.
To the contrary, mathematics is a conversation about ideas and so it must be
carried out in our languages, in our case English. What we first learn about
language only permits us to explore concepts in the center of mathematics, such
as counting. But as we develop more language skill we can reason further. This
reasoning is in all directions. That is, we might take our counting and turn
it into fractions and decimals, or we might begin to think how numbers are
artificial place holders for sets of the same size. In this way, mathematics is
not truly ‘axiomatic’ in the sense that we make a specific ‘best possible’ list of
assumptions and consider only the implications from those assumptions. Indeed,
mathematics is also continually works away from axioms by replacing them with
ever more subtle and complex assumptions which help expose opportunities for
new fields of reasoning.

1.2 Relations and Functions
Further Reading: Jacobson
§0.3Sets and classes allow us to formalize many concepts once known intuitively, for

example unions are a formal treatment of combining to properties. The concept
of a relation allows us to consider certain sets in context to bigger sets. For
example, we might wish to consider how car color relates to resale value. This
could be captured by a table in which one column lists the possible colors of a
car and the second columns list the average resale value for a car of that color.
If we strip away the meaning of colors and dollars we find we have made a list
of ordered pairs (color, value) and the entire table is therefore a subset of all
possible ordered pairs (a, b) where a is color and b is number. This general idea
may seem to have lost the point of the original problem: we have removed the
meaning from the set. However, by doing so we can stand back and see in an
easier way that this set is similar to other sets. For example, this set might be
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compared with a table relating colors in TV comercials to average number of
viewers who respond positively to the advertisment. By releasing the semantics
(i.e. the meaning) from the two sets we can make beneficial connections between
the tables.

A relation on non-empty sets (or classes) S and T is a subset (or subclass)
R of the set (or class) S × T of ordered pairs (s, t), for s ∈ S and t ∈ T .
If (s, t) ∈ R we will write sRt. This ‘infix’ notation attempts to capture the
familiar relations we use elsewhere. For example, if S = T = Z then we can
write a ≤ b for a, b ∈ Z. This common relation can be captured by our somewhat
awkward definition above by letting

R = {(a, b) ∈ Z× Z : b− a is a natural number }.

So when we write aRb we mean that b − a is a natural number and so in
our more familiar notation 0 ≤ b − a. Hence, aRb is the same as writing
a ≤ b. What we manage to do by using R instead of ≤ is that we have not
required any external knowledge about the ordering of numbers. Instead, we
just require a knowledge of subtraction and of natural numbers. This makes a
logical progression possible. First we seek to create natural numbers, then we
create integers along with subtraction. The implied ordering then comes out of
that process. We shall expand on that construction later.

Remark 1.2.1. As this is our first formal definition I need to emphasize an
unspoken protocol in mathematics. A definition is simply assigning a name or
notation to a series of objects or properties (sets or classes). This assignments
is always meant to be in both directions. For example, if E is a relation on A
and B A, then R must be subset of A×B. Likewise, if E′ is a subset of A×B
then we call E′ a relation. Despite obvious logical and grammatical flaws, we
often capture this assumption by the phrase:

All definitions are “if, and only if,”.

It is also crucial to understand that no definition is ever in need of a proof.

One of the most powerful relations is that of a function. Indeed, functions are
perhaps the best known mathematical object after numbers and so we hope that
our following technical description will not supplant the intuition gained by years
of experience with functions. However, as we move our reasonnig increasingly
further away from real numbers and elementary functions that we can graph, it
becomes necessary to declare the formal expectations about functions.

The most familiar definition of a function is a relation from a set A to a set
B for which every a ∈ A is related to one and only one b ∈ B. We want also
the intermediate concept of a partial function.

Definition 1.2.2. A partial function f : A → B between sets (or classes) A
and B is a relation R ⊆ A×B such that:

if for some a ∈ A and b, b′ ∈ B, aRb and aRb′, then b = b′.

We say that R is well-defined when that property holds and we write f(a) = b
since no ambiguity can occur about which element of B to associate to a.

• The domain, denoted dom f , of a partial function is {a : (a, b) ∈ R}.

• The image, denoted im f , of a partial function is {b : (a, b) ∈ R}.

• The codomain, denoted codom f , of a partial function is B.

Finally, a function is a partial function whose domain is A.
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1.3 Operations on Sets

Having described sets and functions we now consider a very special setting
where we have functions between a common fixed set. This is quite common in
mathematics upto Calculus because we often consider only the functions of the
form f(x) = 3x + 9x2 or g(x) = sinx and these always begin and end with the
set R. However, we are even more interested in functions such as f(x, y) = x+y
or f(m,x, b) = mx + b.

Definition 1.3.1. An operation on a set S is a partial function from an arbi-
trary number of copies of S into S.

• An operation ∗ : S → S is called unariy and is often written in postfix or
exponential notation x∗.

• An operation · : S × S → S is called binary and usually written in infix
notation x · y.

• An operation Sn → S is an n-ary operation and in generaly has no stan-
dard notation, but we will denote it by {s1, . . . , sn}.

We are most aware of unary and binary operations. For example, on the real
number R we have the unary operation x 7→ 1

x , or rather x−1. This operation is
not defined at 0 and so it is only a partial function on R. Other familiar unary
operations on R include x 7→ xn for arbitrary n. Of course, if n is a faction such
as 1/2 we may encounter values without a square-root and so again these are
only partial functions.

Several common binary operations in R include addition, mutliplication,
exponentiation, subtraction, division, etc. Notice addition, subtraction, and
mutliplication are functions but division and exponentiation are only partial
functions. For example, we do not encounter division by 0 in the real numbers
and some exponents are either complex or somewhat questionable to describe
(for example (−1)

√
2). We shall see in a moment that ternary operations also

make sense for real numbers and are an incredibly efficient (dare we call them
clever) tool in proofs.

It is customary to introduce operations as 〈S, ∗〉 where ∗ is the operation
and following that write only S. For example, we write 〈R,+〉 the first time
we consider addition on R but afterward we abbreviate this to R. In fact, it is
quite common to see authors announce that convention by writing the logically
impossible sentence: R = 〈R,+〉. Of course, those authors understand that R
cannot reference itself in that way but they are simply explaining to the reader
that they are temporarily dismissing all other known properties of R to focus
exclusively on the set with its operation of addition.

Finally, for many the study of operations was constrained to mathematics.
However, an explosion in interesting unary and binary operators came out of
the development of robust computer programming languages such as C++ and
Java, e.g. ++i, k--, s<<2, s || t, and s ? a : b.1 For that reason it is
increasingly useful to study operations without assumptions on their properties.
Hence, we postpone a tour through the usual properties (e.g. associativity and
commutativity) until after we discover the essential properties of congruence.

1These notations produce i + 1, k− 1, shifting the digits of a binary number to the left by
2 (same as multiplying by 4 but done very efficiently), taking bitwise or of the bits in s and
t, and the final ternary operation outputs a if s 6= 0 and otherwise b. That can be viewed as
an advance variant of Kronecher’s δ function in mathematics.
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1.4 Models

In this section we introduce the meaning of axioms, theorems, and proofs in the
context of abstract algebra. It is perhaps in algebra that for the first time we
encounter proofs of properties that actually have no meaning on their own but
must later be associated to a specific context to gain meaning. For example,
in Calculus we prove the Mean Value Theorem and that gives an immediate
description of how the tangents of a curve relate to the overall change of the
curve. However, in abstract algebra we make claims such as,

“If we can divide by zero then every number equals 0.”

Of course that sentence is immediately pointless because we never allow division
by zero. Yet, what this abstract scenario does for us is provide a sand-box to try
out why we do not wish to permit division by zero. We find that it has little to
do with how we might slice a pizza (after all, no one can slice a pizza into 1/

√
π

parts even though every calculator can divide by
√

π without effort). Instead,
we find that the consequence is severe: all numbers must be equal to zero for
division by zero to be possible. Thus, this sentence is vitally important as it
indicates the reason we never use number systems which would permit division
by zero.

1.4.1 Axioms and Theorems

Stepping back for a moment, we are not invested in understanding the philo-
sophical implications of logic as a whole so we ignore sentences such as “The
cow jumped over the moon.” Instead sentences (or statements) here will mean
only mathematical content such as

“The variable x is equal to three.” (abbreviated as x = 3).

In principle the sentences we care about can be assigned a value of true or false
but perhaps require some context to make the assignment. For instance, x = 3,
is neither true nor false until we interpret the meaning of x. So we might say
x = 5− 2 satisfies or models the sentence x = 2 because the interpretation of x
is now made clear and indeed in that interpretation the sentence becomes true.
On the other-hand, x = 5 + 2 does not satisfy (is not a model for) x = 3.

There are some subtle points in this formality. E.g.: the reader sees ? and
ε instead of + and 0, or · and 1. This means that the application of a theorem
which follows from a sentence in abstract algebra is not meaningful until we
substitute in not only variables (which is by now quite common in our level of
mathematical experience) but we must also substitute in for the operations and
any constants we deem essential, such as replacing the identity ε with 0 or 1.
However, we do not substitute in a value for s. That distinction can become
very difficult to perceive as we get more involved sentences. Thus, we need to
be more precise in describing our variables.

First consider the definition of n!. This is usually described as n! =
∏n

i=1 i.
Here the role that n plays as a variable is different form the role for i. The
variable n must be given to us at a later time, for example 5! replaces n with
5. However, the person interested in 5! will not provide us with a value for i,
rather the sentence informs us what values i should take once we know a value
for n. This is because the variable i is bound to the sentence defining n! where
the letter n is unbound. If you are familiar with programming you may have
encountered a difference between so called global and local variables. This is
the same situation. Unbound variables (global variables) are not explained by
the content of the sentence and so they must be interpreted before using the
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sentence. On the other hand bound variables (local variables) are there to do
work for the meaning of the sentence and so bound variables are specified with
quantifiers such as for all, ∀, and there exits, ∃, or for all i between 1 and n, etc.

So let us begin by abstracting the usual idea of zero and one. There is only
one number α such that x + α = x (i.e. α = 0) and similarly there is only
one number β such that βx = x (obviously β = 1). We can prove these two as
independent facts but they are naturally explained by one common principle.
This is because the values 0 and 1 in our usual numbers systems are models of
the next sentence.

Identity Axiom
For a binary operation ? on a set S there is ε ∈ S where for all s ∈ S,

s ? ε = s = ε ? s.

Such an element ε is called an identity for 〈S, ?〉.

To complete our illustration we prove the ε above is unique.

Theorem 1.4.1. If 〈S, ?〉 satisfies the identity axiom then the implied identity
is unique to 〈S, ?〉. Hence we now speak of the identity of 〈S, ?〉.

Proof. Let ε, ε′ ∈ S be elements of S where for every s ∈ S, s ? ε = s = ε ? s
and s ? ε′ = s = ε′ ? s. It follows that

ε = ε ? ε′ = ε′.

Now in order to write an axiom that properly separates the unbound and
bound variables we introduce terminology from Universal Algebra.

Definition 1.4.2. A signature is a list of operations types that may be applied
to describe the operations an a class of sets with operations. Such a set will be
called a σ-algebra.2

Remark 1.4.3. Since a signature records only the types (e.g. binary, unary, etc.)
of operations we wish to impose on a set it is entirely sufficient that a signature
be a list of numbers, such as [2, 2, 1, 0, 0] instead of [+, ·,−, 0, 1]. We prefer the
intuition communicated by the symbols.

Example 1.4.4. (i) The signature of the natural numbers under addition would
be [+, 1] where + is a binary operation and 1 is a “nullary” operations –
i.e. a constant.3 We distinguish 1 as it is necessary to define all the natural
numbers, e.g. 1, 1 + 1, (1 + 1) + 1, . . . . Notice that 1 is not the identity
for addition of natural numbers. This illustrates how a signature does not
impose semantics (meaning) on the symbols.

(ii) The signature of the integers under addition and multiplication is σ =
[+, ·,−, 0, 1] where + and · are binary, − is unary (corresponding to taking
negatives), and 0 and 1 are nullary. In principle, a statement concerning

2There is an even older use of the name σ-algebra that occurs in Measure Theorey: the
construction of modern integrals. These two meanings are unrelated.

3Recall an n-ary operator on a set S is a function Sn → S. So a nullary operator should
mean a function S0 → S. There are two sensible interpretations of S0. Either S0 is the
empty-set as it represents an empty product, or S0 = {()} the set with the empty coordinate.
With S0 = {()} we have the size of S0 equal to 1 similar to how we choose 20 = 1, etc. It is
in that sense that a nullary operation 1 : S0 → S corresponds to a constant, namely there is
only one element in S which is in the image of the function.
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integer addition or multiplication can be expressed using the symbols in
sigma and then general logical notation such as variables, parentheses,
conjunctions (and, or), not, and quantifiers (∀,∃).4 This signature also
applies to the natural numbers even if − and 0 are not used in that set.
This is necessary because the integers cannot be described without natural
numbers. In this situation the natural numbers treat − and 0 as partial
functions (i.e. the domains are only subsets of N2 and N0 respectively).

It has become convention to use a signature that reflects the implied seman-
tics of the symbols so that the reader can borrow from intuition. So, the identity
axiom can now be written precisely as follows:

Identity Axiom (redux)
S is a set with a binary operation · and a nullary operation 1 such that

∀s ∈ S, s · 1 = s = 1 · s.

The unbound variables, S, ·, and 1, are all specified at the start without any log-
ical quantifiers whereas the bound variables are preceded by a logical quantifier,
in this case ∀.
Remark 1.4.5. We caution the use of 1 instead of ε and · has pedagogical im-
plications. For example, to say that the the integers model the identity axiom
would ask us to write · = + and 1 = 0. Though this is certainly legal, it reflects
a disrespect to how we tend to learn. It is best to be verbose in such settings
saying that + replaces the abstract · and 0 plays the role of 1.

Definition 1.4.6. A model of a set Φ of sentences is an assignment of variables,
operations, and constants that satisfy each sentence in Φ.

With the vocabulary of models in place we can finally describe a reliable
scheme for theorems in algebra.

Definition 1.4.7. Let φ and Φ be sentences with a common signature σ.

(a) A sentence φ is a consequence of a set Φ of sentences if: for every model M
of Φ, M is a model for φ. We often say φ is a theorem following from Φ.

(b) The theory for Φ is as the class of all consequences of Φ. The sentences in
Φ are the axioms (also known as postulates or laws) of the theory.

Notice that our definition of theorems does not try to capture the differences
we impose with names like lemma, proposition, corollary, etc.. Those labels
should be considered as theorems in the sense of model theory. We simply
impose such names to give a hierarchy of the significance of a result. The
hierarchy is somewhat personal and there are many examples in mathematics
of truly significant lemmas (e.g. Schur’s Lemma) and totally pointless theorems
(no examples necessary).

Also notice that a theory associated to a set Φ of axioms might also be the
theory associated to a different set Γ of axioms. We will see such a situation in
an exercise below. This gives us some flexibility. We might begin with axioms
we found through some natural means but along the way find reason to use
alternatives. The theory is unaltered.

It is critical to be clear about which assignment of variables, operations,
and constants we intend when we speak of a model for a set of sentences. The
following example illustrates how different the results can be.

4This demonstrates that we are constraining ourselves to first order logic.
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Example 1.4.8. (a) The natural numbers N = {1, 2, 3, . . . } do not model the
identity axiom under addition (because, for all m ∈ N, 1+m 6= 1 and so no
number m ∈ N satisfies the identity axiom).

(b) The natural numbers N are model for the identity axiom, specifically where
multiplication is the operation and 1 is the identity element.

1.4.2 Common Axioms of Algebra

The following is an incomplete list of the axioms which appear in algebra. We
organize the list according to the signature and axioms at the top are more
common than ones at the bottom. In most situations we combine several ax-
ioms and multiple operations. However, these constitute different and essential
properties.

Axioms with signature {·,−1 , 1}.

Associativity Axiom
For a {·}-algebra A,

∀s, t, u ∈ A, (s · t) · u = s · (t · u).

Commutativity Axiom
For a {·}-algebra A,

∀s, t ∈ A, s · t = t · s.

Identity Axiom
For a {·, 1}-algebra A,

∀s ∈ A, s · 1 = s = 1 · s.

Inverse Axiom
For a {·,−1 , 1}-algebra A, A satisfies the identity axiom and

∀s ∈ A, s · s−1 = 1 = s−1 · s.

Substitutes for associativity:

Moufang Axiom
For a {·}-algebra A,

∀s, t, u ∈ A, (s · t) · (u · s) = s((t · u) · s).
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(Left) Alternative Axiom
For a {·}-algebra A,

∀s, t ∈ A, (s · s) · t = s · (s · t).

Jordan Axiom
For a {·}-algebra A,

∀s, t, u ∈ A, (s · s) · (t · s) = ((s · s) · t) · s.

Flexible Axiom
For a {·}-algebra A,

∀s, t ∈ A, (s · t) · s = s · (t · s).

Power Associative Axiom
For a {·}-algebra A,

∀s ∈ A, (s · s) · s = s · (s · s).

Substitutes for commutativity.

Idempotent Axiom
For a {·}-algebra A,

∀s ∈ A, s · s = s.

Axioms with signature {+, ·,−, 0, 1}.

Distributive Axiom
For a {+, ·}-algebra A,

∀s, t, u ∈ A, s · (t + u) = (s · t) + (s · u), (s + t) · u = (s · u) + (t · u).

Jacobi Axiom
For a {+, ·}-algebra A,

∀s, t, u ∈ A, s · (t · u) = (s · t) · u + t · (s · u).
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Skew-commutative Axiom
For a {+, ·, 0}-algebra A,

∀s ∈ A, s · s = 0.

1.1 For each equation below, choose the fewest combination of axioms from
the standard list which allow you to state and prove the equation.

(a) 0 · x = 0 = x · 0.

(b) (−1) · x = −x.

(c) (−x)(−y) = xy.

(d) There is only one number that can be a 0 and only one number that can be
a 1.

(e) If ab = 0 then either a = 0 or b = 0, or both.

Showing all your steps from the axioms can be tedious and usually is not
helpful. For instance, in the following example most of the steps are trivial yet
they require a lot of work to do formally. We will not generally have to see all
these steps.

Example 1.4.9. Solve for x in the following equation making sure to indicate at
each step what axioms you use. Do one step at a time and do not skip steps.

4 + 3x = 2x− 1.

Solution:

4 + 3x = 2x− 1 = 2x + (−1);
3x + 4 = 2x + (−1); Commutativity of addiontion (left side.)

(−2x) + (3x + 4) = (−2x) + (2x + (−1)); Equality is a congruence for addition.
((−2x) + 3x) + 4 = ((−2x) + 2x) + (−1); Associativity of addition.
((−2 + 3)x) + 4 = ((−2 + 2)x) + (−1); Distributive Law.

((−2 + (2 + 1))x) + 4 = ((−2 + 2)x) + (−1); Definition of 3.
(((−2 + 2) + 1)x) + 4 = ((−2 + 2)x) + (−1); Associativity of +.

((0 + 1) · x) + 4 = (0 · x) + (−1); Definitin of −2 (used twice).
(1 · x) + 4 = (0 · x) + (−1); Definitin of 0.

x + 4 = 0 + (−1); Identity of × and 0 · x = 0 proved above.
x + 4 = −1; Definition of 0.

(x + 4) + (−4) = −1 + (−4); Equality is a congruence for +.
x + (4 + (−4)) = −1 · 1 + (−1)4; Associativity & property above.

x + 0 = −1(1 + 4); Definition of −4.
x = −1 · 5. Definition of 0 & def. of 5.
x = −5 Property above.

�
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1.2 Solve for x in the following equation making sure to indicate at each
step what axioms must be used. Do one step at a time and do not skip steps.

6x− 9 = x2.

Despite being extremely tedious, showing steps does have merit. To illustrate
this consider the following example.
1.3 Find the error in the following seemingly routine argument.

x = 2;
x2 = 2x;

x2 − 4 = 2x− 4;
(x− 2)(x + 2) = 2(x− 2);

x + 2 = 2;
4 = 2.

1.5 Varieties

Most of the axioms we encounter in algebra involve equations between formulas
in the operations we are intending to study. For example, in the integers the
commutative law is presented as x + y = y + x, for all x, y ∈ Z. Universal
Algebra is the branch of algebra that tries to study everything algebraic by
considering specific examples as solutions to particular equations. In that way
we might hope to discover universal properties and apply them uniformly to all
our systems of numbers without ever consider the details of an example.

Recall that the signature σ is a list of operator types that can be applied to
a set S. For example, the integers Z have a binary operation ‘+’ of addition, a
binary operation ‘·’ for multiplication, a unary operation ‘−’ to take negatives,
a nullary operator 0 – the additive identity, and a nullary operator 1 – the mul-
tiplicative identity. So the signature that captures all these common properties
would be σ = {+, ·,−, 0, 1}. The important aspect to remember is that signa-
tures do not carry the information of the set S, they just represent the types
of operations needed. Thus, the signature σ = {+, ·,−, 0, 1} applies equally
well to Q, R and C. This signature also applies to N, but because there is no
natural way describe negatives in 0 in N, their we simply assume the associated
operations are defined nonwhere (recall operations are partial function so their
domain can be empty).

Definition 1.5.1. Fix a signature σ.

(i) A σ-formula is a conjunction of variable and operations in σ.

(ii) A σ-equation is sentence of the form φ(x1, . . . , x`) = γ(x1, . . . , x`) where
φ and γ are σ-formulas in variables x1, . . . , x`.

When σ is obvious from context we omit including it in the notation.

Example 1.5.2. For the signature σ = {+, ·,−, 0, 1}, the following are σ-formulas
x + y, x · y + 1, and x · (y − z). Also, x + 2 and x2 are not formulas because 2
is not in the signature.

Definition 1.5.3. For a signature σ and a set Φ of σ-equations, the σ-variety
V(Φ), with laws Φ is the class of all models S such that for all equations
φ(x1, . . . , x`) = γ(x1, . . . , x`) in Φ it follows that

∀s1, . . . , s` ∈ S, φ(s1, . . . , s`) = γ(s1, . . . , s`).
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Example 1.5.4. (i) The variety V = V(x · 1 = x = 1 · x) (where the implied
signature is {·, 1}) consists of all sets with a binary operation and an
identity for that operation. Thus, 〈N,+〉 /∈ V because N does not have an
identity under addition, but 〈N, ·〉 and 〈Z,+〉 are in V.

(ii) The variety V = V(x ·x = x) (where the implied signature is {·}) consists
of all sets with a binary operation which is idempotent, that is, x2 = x. For
example, in the rational numbers, x ? y = 1

2 (x + y) has the property that
x ? x = x, so 〈Q, ?〉 ∈ V. However, 〈Q, ·〉 is not in V because 2 · 2 = 4 6= 2.

Later we will give a detailed description of the many useful varieties we
encounter in algebra. For now we recommend some exploration based solely
on the definitions. Notice that for some products in the exercise below the
associative identity is replaced by some non-obvious rules.
1.4 Decide if the following varieties contain the candidate indicated.

(a) 〈Q, ·〉 ∈ V(x · y = y · x).

(b) 〈M2(Q), ·〉 ∈ V(x · y = y · x).

(c) 〈M2(Q), •〉 ∈ V(x·(y·z) = (x·y)·z, x·y = y·x) where X•Y = 1
2 (XY +Y X).

(d) 〈M2(Q), •〉 ∈ V((x ·x) · (y ·x) = ((x ·x) ·y) ·x) where X •Y = 1
2 (XY +Y X).

(e) 〈M2(Q), [, ]〉 ∈ V(x · (y · z) = (x · y) · z) where [X, Y ] = XY − Y X.

(f) 〈M2(Q), [, ]〉 ∈ V(x · x = 0, x · (y · z) = (x · y) · z + y · (x · z)) where
[X, Y ] = XY − Y X.

1.6 Standard Models

1.6.1 Semigroups, Monoids, & Groups
Further Reading Jacobson
§1.1The claims in Example-1.4.8 leaped a bit ahead and assumed things of the nat-

ural numbers which, however evident, are not the exact meaning of counting.
These do need some clarification. For example, it is the definition of multiplica-

tion that m · n =
m︷ ︸︸ ︷

n + · · ·+ n, but that sum is not entirely well-defined because
addition is a binary operation and so there is a need to include parentheses. Further Reading Jacobson

§0.7.The justification is obvious, addition of natural number satisfies the is asso-
ciative axiom (below). However, we will not prove this point either.

Variety of Semigroups
A binary operation ? on a set S is associative when

s ? (t ? u) = (s ? t) ? u (∀s, t, u ∈ S).

We call 〈S, ?〉 (or sometimes just S) a semigroup.

As the name semigroups suggests, number systems that model only the
associative axiom are only part of what we hope for in a useful number system.
Many semigroups also model the identity axiom which makes for a powerful
combination. Thus, models for both the identity and associative axioms are
given a name of their own; they are monoids.

Example 1.6.1. The natural numbers are a semigroup under addition and a
monoid under multiplication.
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A much more general example of semigroups and even monoids is provided
by functions. The reason is the following well-known observation.

Lemma 1.6.2. Function composition, whenever defined, is associative.

Proof. Let f : A → B, g : B → C, and h : C → D be functions. For each
x ∈ A,

((h ◦ g) ◦ f)(x) = (h ◦ g)(f(x)) = h(g(f(x))
= h((g ◦ f)(x)) = (h ◦ (g ◦ f))(x).

Therefore (h ◦ g) ◦ f = h ◦ (g ◦ f).

Definition 1.6.3. Fix a set X. The transformation monoid on X is the set of
all functions on X with composition as the binary operation and the identity
function as the identity of the monoid.

Even though semigroups are not the most robust numbers we might hope
to discover, they are amongst the most common because they have such a low
threshold to be satisfied – one axiom. More surprising, they are equivalent to
the study of the most primitive computational circuits, so called finite state
automata. Those circuits do not require memory and they control the bulk of
all machines such as elevators and microwave ovens. It may appear that these
systems require memory to lock in the floor your want to reach or the time to
heat the water. But in fact the range of possible outcomes is so narrow that
the machine simply takes the instruction and begins running, it does not need
to circle back and recall what input you gave it to complete its task. Because
of this tremendous utility, modern studies of semigroups in mathematics have
increased considerably.

The natural numbers are not as robust as we hope. Of course we cannot use
them to solve x + 5 = 2 nor 5x = 2. For that we need negative numbers and
fractions. Before making models of integers and rational numbers let us absorb
the property of being a ‘negative’.

Variety of Groups
For a monoid 〈M, ·〉, an inverse to an element m ∈ M is an element m′

such that
m ·m−1 = 1 = m−1 ·m.

A group is a monoid where every element has an inverse.

Again we emphasize that axioms are written with variables for both sets and
numbers as well as operations. So in the inverse axiom we wrote m−1 because
it is memorable. However, when we work with the integers under addition it
is clear that the inverse of 2 is −2 and not 2−1 – which is not an integer. So
the unary operator of inverse in the axiom must be replaced with the unary
operation for the specific model, in the last case, negation.

Example 1.6.4. (a) The natural numbers are not a group under addition nor
multiplication. However, the set {1} is a group under multiplication.

(b) The integers are a group under addition but not under multiplication.

(c) The rational numbers are a group under addition but not under multiplica-
tion (because we do not have an inverse for 0).
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1.5 Alternate Group Axioms In this exercise we show that the same theory
can be specified by different axioms. The example is the theory of groups with
the axioms as described above. Now show that every model 〈G, ·〉 satisfying the
group axioms also satisfies the following sentence.

(a) · is associative

(b) There is an e ∈ G such that for all g ∈ G, e · g = g.

(c) For every g ∈ G there is a g′ ∈ G such that g · g′ = e.

Next prove that every model 〈G, ·〉 satisfying the axioms (a), (b), & (c) also
satisfy the group axioms. Thus, the two theories are the same.

1.6 Inverse products Suppose 〈G, ·〉 is a group. Define 〈G,÷〉 as the set
with binary operation

g ÷ h = g · h−1(∀g, h ∈ G).

Prove that 〈G,÷〉 is a group then every element g ∈ G satisfies g2 = 1. Oth-
erwise show that 〈G,÷〉 does not satisfy any of the usual axioms of a group.
Notice this explains how subtraction and division behave so differently from
addition and multiplication.

Permutation groups

Definition 1.6.5. For a set X, the symmetric group on X, denoted Sym(X) is
the set of all invertible functions X → X. Also, invertible functions on a set
are referred to as permutations of X. If X = {1, 2, . . . , n} then often Sym(X)
is abbreviated Sn. A group consisting of permutations and whose operation is
composition is called a permutation group.

We will later encounter Cayley’s Theorem which explains that every monoid
can be expressed as a transformation monoid (with some loss of information)
and every group can be expressed as a group of permutation (without any loss
of information). For now we pause to explain some of the common methods to
describe permutations using a method known as cycle notation.

A function f : {1, 2, 3, 4} → {a, b, c, d} must assign a single value to each
input 1, 2, 3, and 4. This can be captured by a table whose first row is the
inputs and whose second row is the assigned output. For example:

f =
(

1 2 3 4
b a c a

)
.

We interpret this to mean f(1) = b, f(2) = a, f(3) = c, and f(4) = a so this
determines a function. When f is a transformation, i.e. a function from a set
X back into X, then two natural methods to encode f present themselves.

The most common is what we know as the graph of f . There we plot f as
the points (x, f(x)) for every x in the domain of f . For instance, f : R → R
where f(x) = x2 instructs us to plot the parabola (x, f(x)). Without question
this technique is very powerful, e.g. with it we discover the notion of tangents
to curves and so construct the Calculus.

When X is a small set, especially when X is finite, the power of graphs is
less obvious because the graphs of functions f : X → X do not take on familiar
shapes. (In actuality, functions f : R → R are also pointless to draw in general
because a random function of that kind would not be continuous and so it would
appear as random dots spread around the plane.) However, because f starts
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and ends in X we might look for eventual patterns. For instance, we start with
x0 ∈ X and find f(x0) = x1 ∈ X. Next we try f(f(x0)) = f(x1) = x2 ∈ X,
etc. This produces an infinite sequence of element in X. When the size, which
we denote by |X|, of X is finite it follows by the pigeon-hole-principle5 that at
some point

xi+1 ∈ {x0, x1 = f(x0), x2 = f2(x0), . . . , f i(x0)}.

At that point there is no reason go further because once f i+1(x0) = f j(x0)
then also f i+2(x0) = f j+1(x0), etc. and we entire an infinite repeating cycle.
Graphically this might appear as follows.

4 // 5
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1 // 2 // 3
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This would represent the function:

f =
(

1 2 3 4 5 6 7 8 9 10
2 3 4 5 6 7 8 3 10 9

)
.

Notice f is not invertible as there is no output equal to 1. This gives us a visual
test of invertibility. If we draw the diagram as above, the function is invertible if,
and only if, it is a collection of cycles. Notice we can record cyclces in a simply
manner. Instead of drawing a table inputs to outputs, we can simply record
the sequence (x0, f(x0), f2(x0), . . . , f i(x), . . . ). If f is a permutation then it is
enough to record all the cycles, and we recognize no cycle in f has a value from
any other cycle. So we say that f is the ‘product of disjoint cycles’. This needs
a little formality.

Definition 1.6.6. Let X be a finite set and f : X → X a permutation of X.

(a) A base for f is subset Y ⊆ X such that for every y ∈ Y and every n ∈ Z,
f i(y) ∈ Y implies that y = f i(y).

(b) A cycle of f is (y, f(y), f2(y), . . . , f i(y), . . . ).

.

For example, the following two disjoint cycles identify a permutation of
{1, . . . , 8}

2 // 3
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A base for this permutation would be {1, 7}, also {2, 8} and {1, 8} are bases.
Yet {1, 2, 7} and {1, 3} are not bases. The cycles of this permutation are
(1, 2, 3, 4, 5, 6) and (7, 8), so we recored the entire permutation as (1, 2, 3, 4, 5, 6)(7, 8).
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1.6.2 Rings & fields
Further reading Jacobson
§2.1–2.4,2.17 The natural numbers have two binary operations which are strongly related

so there should be an axiom considered that explains at least a part of this
relationship. This is the distributive axiom, recall its definition. For a set S
with binary operations · and + (again these are the usual signatures but not
necessarily the actual labels of the operations),

s(t + u) = (st) + (su),
(s + t)u = (su) + (tu) (∀s, t, u ∈ S).

We say that · distributes over +.
1.7 Describe all the models satisfying the following axioms: for a set S

(i) 〈S, +〉 is a group,

(ii) 〈S, ·〉 is a group, and

(iii) · distributes over +.

[Hint: notice a model for these axioms would represent division by zero.]

Theorem 1.6.7. Suppose 〈S, +〉 has an identity 0 and 〈S, ·〉 an identity 1. If ·
distributes over + then for all s ∈ S, s · 0 = 0 = 0 · s.

Proof. Let 0 be the identity of + and 1 the identity of ·.

1 = 1 + 0
1 · s = (1 + 0) · s (∀s ∈ S)

s = (1 · s) + (0 · s)
s = s + (0 · s).

Thus, for all s ∈ S, s + (0 · s) = s and by beginning with 1 = 0 + 1 and
repeating the steps above we find (0 · s) + s = s. Therefore (0 + s) satisfies
the identity axiom for 〈S, +〉. But we saw in Theorem-1.4.1 that identities are
unique. Therefore 0 · s = 0. The argument can be adapted to show s · 0 = 0 as
well.

Definition 1.6.8. A ring is a {·,+,−, 0}-algebra R where

(i) 〈R,+,−, 0〉 is an abelian group,

(ii) 〈R, ·〉 is a semigroup, and

(iii) · distributes over +.

If R has a multiplicative identity 1 then say R is a unital ring. If the multipli-
cation in R is commutative we say R is a commutative ring.

Example 1.6.9. (i) 2Z is a ring but not unital.

(ii) M2(Q) is a unital ring but not a commutative unital ring.

(iii) Z is a commutative unital ring.

(iv) The set {0} with the trivial operations 0 + 0 = 0 and 0 · 0 = 0 is a
commutative unital ring in which 1 = 0. Some authors decline to allow
such things to be rings. In any case such a thing is called a trivial ring.

5If you have n pigeon-holes and n + 1 pigeons, then two of them must share a home.
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(v) M2(Q) with product x◦y = 1
2 (xy+yx) is not a ring because the multiplica-

tion is associative. (However, the multiplication is unitl and commutative.)
Remark 1.6.10. It is not uncommon to find authors insist that all rings be unital.
This is acceptable but has a few delicate problems. First of all, when authors
write this they often implicitly (or sometimes explicitly) require that 0 6= 1. We
have seen that if 0 = 1 then every element in the ring equals 0, i.e. the ring is
{0}. However, insisting that 0 6= 1 is not and equation. So this is not something
we can impose as a law of varieties. Indeed we will see later that varieties must
be closed to subalgebras and {0} is always a subalgebra of a ring. Therefore
we cannot make a variety out of the assumption that all rings are unital where
0 6= 1. Instead, if we insist that all rings are unital we must permit the silly
instance of the ring {0}.

1.6.3 Modular rings

Think of a clock. Times of day are recorded as numbers 1, 2, . . . , 12 with the
agreed rule that x + y will be reduced back to a number between 1 and 12, e.g.
5-o-clock plus 9-o-clock is 2-o-clock rather than 14-o-clock. The precise formula
involves the division algorithm.

Theorem 1.6.11 (Division Algorithm). For every pair (n, m) of integers where
m 6= 0, there exists unique integers q (the quotient) and r (the remainder) such
that 0 ≤ r < q and n = mq + r.

Proof. Suppose that n ≥ 0. For every positive integer q, as m 6= 0, mq < mq +
1 < m(q + 1). Therefore the sequence 0 < m < 2m < · · · eventually is larger
than n. Let q be the smallest nonnegative integer such that mq ≤ n < m(q+1).6

Hence, 0 ≤ r = n −mq < m and n = mq + r. If n < 0 then there are unique
integers q and r such that −n = mq + r and 0 ≤ r < m. So

n = −mq − r = −mq −m + m− r = m(−q − 1) + (m− r).

Notice (−q − 1) and (m− r) are integers and 0 ≤ m− r < m.

Definition 1.6.12. Fix an integer m. Let Z/m = {0, 1, 2, . . . ,m−1}. For each
x, y ∈ Z/nZ define

x + y ≡ r (mod m) if x + y = mq + r, 0 ≤ r < m;
xy ≡ r′ (mod m) if xy = mq′ + r′, 0 ≤ r′ < m.

We call this addition and multiplication modulo m.

It is safest to draw a distinction between regular addition and addition mod-
ulo q. This is why we write the symbol ≡ instead of =, e.g. to avoid confusing
5 + 9 ≡ 2 (mod q) with writing 5 + 9 = 14.

Theorem 1.6.13. For every n ∈ Z, Z/n is a commutative unital ring. Notice
Z/n is isomorphic to Z/(−n), Z/1 a ring with just one element {0} and Z/0 is
the ring Z.

1.6.4 Division rings & Fields

Definition 1.6.14. (i) A division ring is a unital ring D along with the fol-
lowing property:

∀x ∈ D,x 6= 0 ⇒ ∃x−1 ∈ D,xx−1 = 1. (1.1)

6We are implicitly using the “well-ordering” principle of nonnegative integers. This is
equivalent to induction. To see the correspondence consider Halmos’ Näıve Set Theory.
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(ii) A field is a commutative division ring.

Fields are quite common by by this point. Examples include Q, R, and C.
Less well-known examples include Z/p for a prime p.

Lemma 1.6.15. In a non-trivial unital ring R, if x, y ∈ R such that xy = 0
then either x or y has no inverse.

Proof. Let x, y ∈ R such that xy = 0. Suppose that x has an inverse x−1. It
follows that 0 = x−10 = x−1(xy) = (x−1x)y = 1y = y. Therefore y = 0 and
so y has no inverse. On the other hand if x has no inverse then we also have
proved the lemma. So in all cases either x or y has no inverse.

Notice this lemmas does not say that either x or y is 0!. Indeed, consider
matrices: [

0 1
0 0

] [
0 1
0 0

]
=

[
0 0
0 0

]
.

Theorem 1.6.16. For every n > 1, Z/n is a field if, and only if, n = ±p where
p is a prime.

Proof. Let n = ab where a, b ∈ Z and a, b > 0. Then ab ≡ n ≡ 0 (mod n). By
Lemma-1.6.15, this implies that either a or b has no inverse.

In particular, if Z/n is a field then the only number without an inverse is
0 and so either a ≡ 0 (mod n) or b ≡ 0 (mod n). If a ≡ 0 (mod n) then n
divides a− 0 = a. Yet a, n > 0 and n = ab so n = a and b = 1. As this is done
for arbitrary factorization of n it follows that if Z/nZ is a field then n is prime.

On the other-hand, if p is not a prime then there exists n > a, b > 1 such
that n = ab. Thus, neither a nor b is divisible by n and so neither a nor b
is equivalent to 0 mod n. As ab ≡ 0 (mod n) we have two nonzero elements,
a + nZ and b + nZ in Z/n which have no inverses. We conclude Z/n is not a
field.

Remark 1.6.17. It is correct to regard Z/1Z as a field of size 1. However this
field is isomorphic to the trivial ring {0} and that does require some delicacy
when working. For example, a vector space over {0} is not exactly obvious to
describe. The use of the field of size 1 seems to have begun with the French
mathematician Jacques Tits (who has received both a Fields medal and the
Abel prize). It has also been adopted by Field medal winner Alain Connes and
several others.7 Using this field properly can be difficult and modern texts on
algebra still refrain from including this interesting case.

Remark 1.6.18. The definition of a field (or more generally a division ring) may
suggest that the class of fields makes a variety because it is defined by equations.
However, the inverse axiom for multiplication applies only to non-zero elements
of F . Thus it is not true that F satisfies an equation xx−1 = 1 because it is
only true of some of the elements of F . However, this does not prove the class of
fields from being a variety by means of some other perhaps more clever system
of equations. However, we will give a very clear reason why this cannot be the
case later in the section on direct products.

7Watch Alain Connes speak about this field on Youtube: “Fun with F1”.
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Algebraic Extensions

In Chapter 1 we proved that
√

2 is not a rational number. Thus, we were
motivated to invent new numbers in such a way as to include a model which
would posses a value α where α2 = 2. We mentioned briefly that this can be
done without constructing all decimal numbers. In this section we expand on
that construction.

Suppose we want a new number α to be extend Q in such a way that we
can add and multiply with α and all the usual fractions. This requires that we
include products and sums such as:

3α, α2, 2 + α, −1
2

+
α

7
+ α2011.

Now if our goal is to make α behave like a squareroot of 2 then we would
insist that α2 = 2. We should resist the temptation at this point to write
α =

√
2 = 1.41 · · · . Indeed, we are not even concerned with which of the

two possible roots of x2 − 2 we might pick to become α. Notice already the
assumption α2 = 2 implies we no longer need α2, α3, α4, α5, etc. because
we could always rewrite these as 2, 2α, 4, 4α, etc. So, a number system that
extends Q to include a squareroot of 2 would only need to add in an α along
with all the following numbers:

a

b
+

c

d
α (∀a/b, c/d ∈ Q).

So we define

Q[α] = {x + yα : x, y ∈ Q}.

Unfortunately this notation does not quite make sense yet. To start out, what
is meant by x + yα if we do not yet have a new number α? The answer is that
α is just a place holder for a location as follows:

x + yα = (x, y) ∈ Q×Q. (1.2)

So as sets Q[α] = Q × Q. The notation we pick will become clear once we
consider operations on this set. First we add.

(x + yα) + (z + wα) = (x + z) + (y + w)α (∀x + yα, z + wα ∈ Q[α])

Notice in coordinates this reads:

(x, y) + (z, w) = (x + z, y + w)

so the addition we have is the same addtion we expect for vectors. Indeed, we
treat Q[α] as 2-dimensional vector space over Q with a basis of {1, α} (technically
{(1, 0), (0, 1)}). Notice that as vectors

(x, y) = (x, 0) + (0, y) = x(1, 0) + y(0, 1) = x · 1 + y · α = x + yα.

That justifies the notation we selected. This convention should look familiar if
you have encountered complex numbers before. Specifically complex numbers
are written as a + bi where a, b ∈ R but the are also treated as the coordinate
(a, b) in the xy-plane. The only difference here is that we are using Q instead
of R and α2 = 2 rather than i2 = −1. One crucial fact to remember is that
α = (0, 1) and so α2 = (2, 0) – this is not the same as (0, 2) = 2α.
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The multiplication on Q[α] is created by mimicing the properties of the
distributive property which we hope will hold in order to create a ring structure
on Q[α].

(a + bα)(c + dα) = a(c + dα) + bi(c + dα) (1.3)
= ac + a(dα) + (bα)c + (bα)(dα)

= ac + (ad)α + (bc)α + (bd)α2

= (ac + 2bd) + (ad + bc)α.

Notice that our method to multiply these number is forced on us by the dis-
tributive property along with the goal of making α2 = 2. We also used the asso-
ciativity of multiplication in Q along the way and allowed ourselves to commute
rational numbers passed α. We mention this because in subsequent construc-
tions these assumptions are crucial.

To make the distributive property very noticeable it can help to draw the
multiplication in a table where the product is illustrated as ‘length times width’
as follows:

· c dα
a ac adα
bα bcα 2bd

Once we combine the terms in the grid we recover the product we had above.

Quaternions
Further reading Jacobson
§2.4We close with an example a division ring which is not a field. This example is

quite popular and indeed inspired its creator to vandalize a bridge by inscribe
the rules of the multiplication into the bridge. Subsequently they are often
referred to as the Hamiltonians though it is equally common to see the listed
as Quaternions.

Let H = C × C as a set. However, owing to our eventual use we choose
to describe the elements of H not as ordered pairs (x, y), where x, y ∈ C, but
instead we write x + y̂ (similar to complex numbers which we write as a + bi
where a, b ∈ R). Use the following operations:

(x + yĵ) + (z + w̂) = (x + z) + (y + w)̂ (∀(a + b̂, c + d̂ ∈ H = C× C).

The use of ̂ is simply because we continue on from i. Notice we have numbers
such as i+2̂ and iĵ in H. To help understand where in the term each number is
we write ı̂ instead of i + 0̂. Thus, ı̂ + ̂ is the number (1, 1) ∈ C×C = H and iĵ
means the number (0, i) ∈ C × C = H. Once we describe the multiplication in
H we will discover what we hoped would be true, that iĵ = îĵ – in coordinates
that would read as (1, 0) · (0, 1) = (0, i).

Next we consider the multiplication. We follow the example of complex
numbers. Notice that our method to multiply complex number is forced on
us by the distributive property and the goal of making i =

√
−1. For each

a + bi, c + di ∈ C = {x + yi : x, y ∈ R} we define:

(a + bi)(c + di) = a(c + di) + bi(c + di) = ac + a(di) + (bi)c + (bi)(di) (1.4)
= (ac− bd) + (ad + bc)i. (1.5)

Notice we also used the associativity of multiplication in R and allowed ourselves
to commute numbers in R passed i. We mention this because in subsequent
constructions these assumptions are crucial. To make the distributive property
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very noticeable it can help to draw the multiplication in a table where the
product is illustrated as ‘length times width’ as follows:

· c di
a ac adi
bi bci −bd

Once we combine the terms in the grid we recover the product we had in (1.4).
Now we return to H and describe a product for this set which behaves almost

the same as in C. Recall that for a complex number z = a+ b̂ı, z̄ = a− b̂ı. With
that in mind we can describe the multiplication table for H.

· z w̂
x xz xw
y̂ ȳz −ȳw

Notice in this product we encounter ı̂2, which is still a complex number and
so as before ı̂2 = −1 (in the multiplication table this corresponds to x = ı̂,
y = 0, z = ı̂, and w = 0. We also have ̂2 which we declare to be −1 so
that {a + b̂ : a, b ∈ R} is another copy of C. We see that reflected in the
multiplication table, i.e. using x = 0, y = 1, z = 0, and w = 0. And finally we
encounter ı̂̂ which is in our multiplication table (x = î, y = 0, z = 0, w = 1).
This is assigned the value î̂ – nothing else.

Theorem 1.6.19. H is a division ring that is not a field.

1.6.5 Jordan & Lie rings
Further reading Jacobson
§7.5 Definition 1.6.20. A nonassociative ring is a {•,+,−, 0}-algebra A (where •

is a binary operation) such that

(i) 〈A,+,−, 0〉 is an abelian group,

(ii) • distributes over ·.

It would also be better to have written “nonassociative-ring” so that one is
not lead to missundertand that the algebra A is first and formost a ring – it is
not usually a ring! Evidently every ring is also a nonassociative ring, but the
converse is false. So it is perhaps more descriptive to regard “nonassociative-
ring” to mean “not necessarily associative ring”. However inadequate, the name
has stuck.

Definition 1.6.21. A Lie ring is a {[, ],+,−, 0}-algebra L (where [, ] is a binary
operation) which is a nonassociative ring satisfying

(i) [x, x] = 0,

(ii) (Jacobi Identity) [x, [y, z]] = [[x, y], z] + [y, [x, z]].

As before, a Lie ring is not usually a ring and so it would have been best to
title these as “Lie-rings”. Yet, as with many things through the passage of time
this unfortunate confusion has not been rectified.

Example 1.6.22. (i) For every commutative ring K (e.g. K = R), the set
Mn(K) equiped with it usual addition and with the product [X, Y ] =
XY − Y X makes a Lie ring. It may seem silly to study the ring Mn(K)
using a clunky nonassociative product such as [X, Y ]. However, the next
example demonstrates that sometimes this product is the only obvious
product.
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(ii) For every commutative ring K (e.g. K = R), the set

Altn(K) = {X ∈ Mn(K) : Xt = −X}

equiped with it usual addition and with the product [X, Y ] = XY − Y X
makes a Lie ring. Notice Altn(K) does not make a ring in the usual way
because, for some X, Y ∈ Altn(K), we can have

(XY )t = Y tXt = (−Y )(−X) = Y X 6= −(XY ).

In particular XY /∈ Altn(K).

Lemma 1.6.23. A Lie ring L 6= {0} then L cannot be unital. Furthermore,
for every x, y ∈ L, [x, y] = −[y, x] so we say that the multiplication is “skew-
commutative.”

Proof. If L is unital then there is a number 1 such that for all x ∈ L, [x, 1] = x.
However, [1, 1] = 0 by the first axiom and so this forces 1 = 0 and so L = {0}.

Next, for all x, y ∈ L, by the first axiom, [x + y, x + y] = 0. We also know
[, ] distributes over addition and so we have the following.

0 = [x + y, x + y] = [x, x + y] + [y, x + y]
= [x, x] + [x, y] + [y, x] + [y, y]
= [x, y] + [y, x].

Remark 1.6.24. The Jacobi identity may not appear easy to remember but in
fact it is something quite familiar. Recall the Leibniz rule reads:

d

dx
(f · g) =

(
d

dx
f

)
g + f

(
d

dx
g

)
. (1.6)

If we think of d
dx as x, f as y, and g as z then this formula is nothing more than

example of the Jacobi identity.

Definition 1.6.25. A Jordan ring is a {◦,+,−, 0}-algebra J (where ◦ is a bi-
nary operation) which is a nonassociative ring satisfyingA field is a commutative
unital ring F along with the following property:

∀x ∈ F, x 6= 0 ⇒ ∃x−1 ∈ F, xx−1 = 1. (1.7)

(i) x ◦ y = y ◦ x,

(ii) (x ◦ x) ◦ (y ◦ x) = ((x ◦ x) ◦ y) ◦ x.

If J has multiplicative identity then we say J is unital.

Similar to Lie rings, Jordan rings are not usually rings.
Example 1.6.26. (i) For every commutative ring K (e.g. K = R), the set

Mn(K) equiped with it usual addition and with the product X ◦ Y =
XY + Y X makes a Jordan ring. Actually it is most common to assume
K is has a 1/2 and so we set X ◦ Y = 1

2 (XY + Y X).

(ii) For every commutative ring K (e.g. K = R), the set

Symn(K) = {X ∈ Mn(K) : Xt = X}

equiped with it usual addition and with the product X ◦ Y = XY + Y X
makes a Jordan ring. Notice Symn(K) does not make a ring in the usual
way because, for some X, Y ∈ Symn(K), we can have

(XY )t = Y tXt = (−Y )(−X) = Y X 6= XY.

In particular XY /∈ Symn(K).
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Altenative rings & Octonions
Further reading Jacobson
§7.6 Definition 1.6.27. An Alternative ring is a {·,+,−, 0}-algebra A which is a

nonassociative ring satisfying

(i) (Alternative Laws) x(xy) = (xx)y and x(yy) = (xy)y.

An alternative algebra with a 1 is called unital.

The name “alternative” relates to who the associative property partially
holds. Define the associator as the formula:

[x, y, z] = (xy)z − x(yz). (1.8)

Lemma 1.6.28. (i) In a ring R, [x, y, z] = 0. In particular every ring is
alternative.

(ii) In an alternative ring R, [x, y, z] = −[y, x, z] = [y, z, x] = [z, x, y] =
−[z, y, x] = −[x, z, y]. That is, if we rotate the letters we get the same
associator but if we flip two letter we “alternate” signs.

Proof. (i). In a ring the multiplication is associative and so [x, y, z] = (xy)z −
x(yz) = 0.

(ii). An an alternating ring [x, x, y] = 0 and [x, y, y] = 0. So we “polar-
ize” these identities, which means to replace the letters with sums and use the
distributive property to derive new identities.

0 = [x + y, x + y, z] = ((x + y)(x + y))z − (x + y)((x + y)z)
= (xx + yx + xy + yy)z − (x + y)(xz + yz)
= (xx)z + (yx)z + (xy)z + (yy)z − x(xz)− x(yz)− y(xz)− y(yz)
= (xx)z − x(xz) + (yy)z − y(yz) + (xy)z − x(yz) + (yx)z − y(xz)
= [x, y, z] + [y, x, z]

The other identite are seen by similar substitutions.

We have shown that rings are alternative but it would not make sense to
introduce alternative rings if there were not an important family of examples of
alternative rings that are nonassociative, and hence not rings. There is such a
family known as Octonions.

We repeat the process we used to create the quaternions but we make one
more modification.

Let O = H×Hˆ̀ with addition of vectors, i.e.:

(a + bˆ̀) + (c + dˆ̀) = (a + c) + (b + d)ˆ̀ (∀a, b, c, d ∈ H). (1.9)

We multiply as follows

· z w ˆ̀
x xz wx

y ˆ̀ ȳz −wȳ

Theorem 1.6.29. O is an alternative ring which is not associative.

Definition 1.6.30. A nonassociative ring is a semifield if every element except
0 has an inverse.

Theorem 1.6.31. O is a semifield that is not a field.
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1.7 Incompleteness and undecidability

We have now created a framework to study the method of reasoning as math-
ematics itself. The framework is largely algebraic as it consists of combining
and substituting variables along with operations from logic (such as the binary
operations of and, or, and the unary operations ∀, ∃, and not). So it makes
sense to spend a small amount of time discovering some of the immediate alge-
braic implications of this approach. The result is fascinating and unexpected.
For example, the word “consequence” suggests a reason (a proof) underpins the
result. As a crude description, a proof of a sentence φ is a list [φ1, . . . , φn] of
sentences (in the same signature) in which φ = φn and for each 1 ≤ i < n:

1. φi ∈ Φ or

2. φi is the result of combining [φ1, . . . , φi−1] by the rules of logic (substitu-
tion, inferences, the law of the excluded middle, etc.).

In 1930, as a response to a question of David Hilbert, Kurt Gödel gave the first
demonstration of a sever restriction on proofs and truths.

Theorem 1.7.1 (Gödel’s Incompleteness Theorem). Either, the theory of the
integers has consequences that cannot be reached by a proof, or the theory of the
integers has proofs reaching statements that are not consequences.

The escence of Gödel’s proof is as follows. We have seen that writing sen-
tences can be done using symbols in a signature, symbols from logic, and vari-
ables. If we so wish we can give each of these finite symbols a number, say

• 1 stands for +,

• 2 represents ·,

• 3 replaces 1,

• 4 is used for ∀,

• 5 for (, and

• 6 for ),

• 7 for =,

• etc.

If you are familiar with computer programs you might recognize that ASCII
is an assignment of numbers to 256 common characters which is quite simi-
lar to Gödel’s idea. This list ultimately stops once we have exhausted all the
arithmetic and logic symbols we need. The actual number of symbols we need
depends on how we think to write our logic. Say it stops at 99 (which is far
larger than necessary). We still have not recorded variables. So we do this
by assigning 100 to x1, 101 to x2, etc. so that we have an infinite number of
variables should we need that. This means that every sentence we wish to write
concerning the integers corresponds to a sequence of integers, for example,

∀x1(x1 · 1 = x1)

might have appeared in our numbering as

(4, 100, 5, 100, 2, 3, 7, 100, 6, 0, . . . ).
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We fill in the list with zeros to make it uniform, but we comment that each
sequence has only finitely many nonzero values.

The next step is to convert lists of integers into one integer is such a way
that we do not loose any information. That requires a one-to-one function. For
that we rely on the Fundamental Theorem of Numbers.

The Fundamental Theorem of Numbers
Every natural number is a product of a unique list of primes.

In some sense it is the use of that theorem that highlights the need for a
model as robust as the integers. That theorem is a indeed part of the Theory
of Integers and so we may use it in creating our one-to-one function. We list
the primes in order {p1 = 2, p2 = 3, p4 = 5, . . . }. Then given a sequence
(a1, . . . , an, . . . ) of integers where only finitely many are non-zero, we create one
integer as:

f(a1, . . . , an, . . . ) = pa1
1 pa2

2 · · · pan
n · · · . (1.10)

This is a one-to-one function because of the Fundamental Theorem of Numbers.
Thus, instead of talking about sentences P in logic we can talk about lists
AP = (a1, a2, . . . ) of integers with only finitely many nonzero entries. Next
instead of talking Ap we now talk about a single positive integer NP = f(AP ).
Hence, we can introduce a function which serves as a “lie-detector”. That is,
g : N → {0, 1} has g(n) = 1 if there is a consequence P in the Theory of Integers
such that n = Np; otherwise g(n) = 0. For example,

P ≡ ∀x1(x1 · 1 = x1)
AP = (4, 100, 5, 100, 2, 3, 7, 100, 6, 0, . . . )

NP = 2431005561007211313717100196.

Since we know P is a consequence of the integers, it follows that g(NP ) = 1.
Notice there will be many integers that do not even correspond to sentences and
those are sent to 0 as well.

We have self-encoded logic in a single model of the integers. Therefore what
Gödel did and what we will do is simply ask our lie-detector if every consequence
has a proof. We do this by creating the sentence

Q(P ) ≡ “The sentence P cannot be proved.”

This is a sentence Q with a variable P and so it has no intrinsic value of true or
false so it is not possible to ask if Q(P ) is a consequence. Only after substituting
for P can we reach the claim that Q is true of false. However, every sentence
P can be converted into an integer, as we did above. Hence, instead of testing
if Q(P ) is a consequence for some substitution P , we create a function h : N →
{0, 1} as follows. If n = NP for a sentence P , then h(n) = g(nQ(P )), and 0
otherwise. That is, h outputs 1 only if we substitute in a value n corresponding
to a sentence P which makes Q(P ) a consequence for the integers. We ask, is
h(nQ) = 0 or is h(nQ) = 1? The reason to ask that question is because of the
paradox that ensues.

Q(Q) ≡ “The sentence Q cannot be proved.”

So, if h(nQ) = 1 then Q(Q) is a consequence, i.e. it is true. Since Q(Q) is true,
it means that Q is a sentence that cannot be proved (yet Q is true). On the
other-hand, if h(nQ) = 0 then Q(Q) is not a consequence, i.e. it is false. But
Q(Q) is false is to say: the sentence Q can be proved (yet Q is false)!
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Most mathematicians and philosophers take the view that the integers are
self-evident and so there cannot be proofs to falsehoods. Hence, we are accus-
tomed to viewing Gödel’s theorem as stating that there are truths about integers
which cannot be proved by properties of the integers. The next question be-
comes:

Can we know when a sentence is a consequences without a proof?

Turing answered no! The process is known as Turing’s Halting Problem. It
works as follows. Suppose that we give a computer a program P and initial
values a1, . . . , an. The computer runs the program with the initial settings
a1, . . . , an, but doing so it may run forever or it may stop after some amount of
time. Turing asked,

Is there a program Q that given as input [P, a1, . . . , an], determines
if P will run forever on the inputs a1, . . . , an?

Notice Q cannot simply run the program P because P may never stop and that
would prevent Q from correctly answering that P will not halt. So Q must some
how determine if the logic inside of P is so designed as to avoid running forever
for the given input but without actually running through the logic step by step.
Said another way, Q will prove that [P, a1, . . . , an] halts without giving the steps
to prove it halts because those steps are the actually running of the program P .
If Turing’s question is answered as false, then we there are consequences which
a computer cannot predict are consequences. Turing demonstrated that if there
is a program Q it cannot decide if Q itself will halt. Therefore, Q cannot exist
(it is its own counter-example).

Remark 1.7.2. We say a theory T for the axioms Φ is complete if every conse-
quence can be reached by a proof starting from the axioms Φ. We also say that
T is consistent if every proof reaches a consequence of the axioms. So Gödel’s
theorem can be stated as:

The theory of the integers is consistent if, and only if, it is not
complete.

Say a theory T is decidable if there is an algorithm to determine if a sentence is
in the theory. So Turing’s theorem can be expressed as:

The integers are undecidable.
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Motivation

Consider how we solve for an unknown value x in equations such as x + 2 = 5.
If we are careful to record each of our steps we would likely proceed as follows:

x + 2 = 5;
(x + 2) + (−2) = 5 + (−2);
x + (2 + (−2)) = 3;

x + 0 = 3
x = 3.

Each step above reveals something significant about our understanding of what
we now collectively regard as algebra. In time we will unpack each of these steps
and see how widely they apply. For this first chapter we want to focus on the
first and perhaps most essential algebraic tool – the ability to apply operations
to both sides of an equal sign and maintain an equality. For example, we did
this when we wrote (x+2)+(−2) = 5+(−2), the operation was addition. Now
let us inspect a more subtle example. Suppose we solve for x in x2 = 25. We
might proceed as follows:

x2 = 25; x = ±
√

25; x = ±5.

The ability to write x = ±
√

25 suggests cooperation between equality and the
operation of ±√. Unfortunately, this cooperation is fictitious as what we have
actually done is split our reasoning into two separate cases: x =

√
25 or x =

−
√

25. When our reasoning is forced to branch into cases, their is no predictable
outcome as the answer depends on the choices we make. Of course, we recognize
that ‘the’ solution is the union of all possible outcomes so in a meaningful way
we want to treat

√
25 and −

√
25 as equivalent even though they are evidently

different numbers. We cannot do this unless we broaden our notion of equality.
So this is the route we take next.

First we describe a sensible generalization of equality known as equivalence
and we also describe the relationship of this construction to several other im-
portant topics including partitions and surjections. Then we return to algebra
and describe what it means for an equivalence and an operation (say addition
or the taking of roots) to coexist in a manner that permits us to solve equations
by algebraic methods. That concept is known as congruence. Finally, we ex-
tend the purely set-theoretic relationships between equivalence, partitions, and
functions to congruence, quotients, and homomorphisms. The result is what is
commonly known as the Fundamental Homomorphism Theorem.

2.1 Equivalence
Further Reading: Jacobson
§0.4Throughout this section we temporarily ignore operations such as addition,

multiplication, squaring, etc. and focus simply on sets and special relations on
sets.

2.1.1 Equivalence relations

Recall that a0 relation on non-empty sets (or classes) S and T is a subset (or
subclass) R of the set (or class) S × T of ordered pairs (s, t), for s ∈ S and
t ∈ T . If (s, t) ∈ R we will write sRt. We now concentrate on a special relation
which appears throughout Set Theory and mathematics.
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Definition 2.1.1. A relation E on A (more precisely on A×A) is an equivalence
if it satisfies the following combined properties:

Reflexive for all a ∈ A, aEa;

Symmetric for all a, b ∈ A, if aEb then bEa; and

Transitive for all a, b, c,∈ A, if aEb and bEc then aEc.

Notice that the usual equal sign is always an equivalence relation, regardless
of the set in question (actually this is a somewhat interesting result for the
inquisitive minded and so we include the proof as an exercise below). However,
we are quite familiar and comfortable with relations that are not equivalences.
As already described, a ≤ b is a relation on Z (or formally on Z × Z); yet, ≤
is not an equivalence because it is not symmetric. To illustrate how we verify
a relation is an equivalence we pick just one of many interesting examples and
leave others to exercises.

Proposition 2.1.2. Let E = {(a, b) ∈ R × R : a − b is an interger multiple of
2π}. It follows that E is an equivalence relation on R.

Proof. First we show E is reflexive. For every a ∈ R, a − a = 0 is an integer
multiple of 2π, namely 0 · 2π = 0 = a− a. Therefore (a, a) ∈ E, or in the usual
infix notation aEa.

Secondly we show E is symmetric. Thus we suppose there are a, b ∈ R such
that aEb. This means that a − b is an integer multiple of 2π, that is, that
a− b = 2πk for some integer k. Thus, b− a = −2πk = 2π(−k). Since −k is an
integer, we have shown that b− a is an integer multiple of 2π. Hence, bEa.

Finally we show E is transitive. First suppose there are a, b, c ∈ R such that
aEb and bEc. Hence there are integers k and j such that a − b = 2πk and
b− c = 2πj. Therefore,

a− c = (a− b) + (b− c) = 2πk + 2πj = 2π(k + j).

As k + j is an integer we conclude that aEc.
As E is reflexive, symmetric, and transitive, it is an equivalence relation.

2.1 Modulo 12 Suppose that E12 = {(a, b) ∈ Z×Z : a−b is a multiple of 12}.
Prove that E12 is an equivalence relation on Z. Also, replace 12 with an arbi-
trary integer n and so En remains an equivalence relation on Z.

2.2 True or False? If E = {(a, b) ∈ Z× Z : a + b is a multiple of 12}, is E and
equivalence relation on Z?

2.3 Fraction equality Let Q = Z× Z+ (where Z+ = {1, 2, . . . }). Suppose
that E = {((a, b), (c, d)) ∈ Q × Q : ad = bc}. Prove that E is and equivalence
on Q.

Moving forward we will now write equivalence relations with suggestive sym-
bols such as ≡, ∼=, ∼, etc. For example, we might write x + 2 ≡ 5 which will
mean to consider x+2 as equivalent to 5 but only to within the notion of equal-
ity given to us by ≡. For instance, if we use the relation E12 of Exercise 1 then
x + 2 ≡ 5 will mean simply that (x + 2) − 5 is a multiple of 12. Because such
equivalences are vastly important they receive special notation. We write:

a ≡ b (mod n) if, and only if, a− b is a multiple of n. (2.1)

Now we briefly detour back to Set Theory to introduce the formal meaning of
the symbol =. Recall, in our understanding everything is a set. So it may appear
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that we have already been using = without understanding it. This is true of
our examples but not of our definition of equivalence relations and so we remain
on logically stable ground. Arguably the following exercise should precede all
uses of =, but recall our goal is not build from perfect axioms upward but to
start from what we already know and build outward in all directions, including
foundations.

2.4 Set equalaity Two sets A and B are called equal if A is a subset of B
and B is a subset of A. In symbols we write A = B if, and only if, A ⊆ B and
B ⊆ A. Show that = is an equivalence relation for the class of all sets.

We have defined sets as any collection of objects, substance, etc. This makes
one family of sets stand out, the empty collections, or rather the empty sets.
The physically minded may have many examples of such objects. For instance
quarks, electrons, neutrinos, etc. Any object that is not comprised of subobjects
could fairly be described as an “empty set”. However, the definition of equal sets
given in Exercise 2.1.1 is a bit narrow minded when it comes to such distinctions.
For as we see in Exercise 2.1.1, below, if that is the meaning of equivalent
sets, then two empty sets are equal. So Set Theory sees no difference between
quarks and electrons, for example. Thus, the mathematics of Set Theory is not
intending to describe the universe as we might encounter it within physics.1

2.5 Unique emptyset Under the definition of set equivalence in Exercise A,
show that two sets that have no subsets must be equal. That is, to Set Theory
(and to mathematics in general) there is only one empty set and we denote it
by ∅.

2.6 Show that under the definition of equality in Exercise 2.1.1, it follows
that {3, 2, 1} = {1, 2, 2, 3, 1}. In particular observe that sets do not record
information about position of an object in a list nor do they record information
about the number of times an object appears in a list.

Remark 2.1.3. Exercise 2.1.1 indicates an important option for computer pro-
grams that implement sets as a data structure. In most computer systems data
is stored implicitly or explicitly with information including location and the
number of times the same item appears. However, there are many uses for the
mathematical construction of a set. The problem is that simple tasks, such as
adding an element to a set, become laborious if not thought out properly. For
instance, if the computer has stored a set as a list {1, 2, 3, . . . , 1000} and the
user adds 99, the algorithm may be forced to search through the list to discover
that 99 already exists in the set and therefore need not be added. When a set
will be updated many times in a row this can be a very slow process. However,
the definition of sets does not insist that no duplicates occur. Instead, it only
requires that if another set has the same entries but in different quantities, then
these two sets should be considered as equal. So it is essential only to implement
an equality test for sets and the actual data can indeed be stored in any order
and with any number of repeats.

2.1.2 Partitions

So far we have viewed equivalence as a relationship between elements in a set.
However, it is often helpful to visualize these relationships. One device well
suited for that task is the notion of a partition of a set.

1There are two possible adjustments here. We could argue the quarks, electrons, etc. are
not empty because they consist of values such as the flavor, charge, and mass. Still another
alternative is to argue with strings – this is perhaps even further removed from Set Theory
foundations.
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Definition 2.1.4. A partition on a set A is a set P of nonempty subsets of A
such that

(i) for every a ∈ A there is a P ∈ P such that a ∈ P , and

(ii) for every P,Q ∈ P, if P ∩Q 6= ∅ then P = Q.

There are various other ways to express the definition of a partition. For
instance, P is a partition if for every a ∈ A there is a unique P ∈ P such
that a ∈ P . Though that definition is certainly more compressed, conversely it
often leads to longer proofs. Indeed, the shorter the definition the more likely
a subtle property has been hidden behind some layers of reasoning that must
then become part of every proof involving the definition. For this reason, it is
a good policy to settle on definitions that balance the need to have compressed
memorable properties with the ease of executing proofs.

Proposition 2.1.5. Fix an integer m and define for each integer n, the set

n + mZ = {n + ms : s ∈ Z}.

Define Pm = {n + mZ : n ∈ Z}. It follows that Pm is a partition of Z.

Proof. First, for every integer n, n = n + m · 0 ∈ n + mZ and so Pm is indeed
a set of nonempty subsets of Z. Furthermore, this also shows that every integer
is contained in one of the members of Pm. So toFix an equivalence relation
E on a set X and a partition P on X. The following hold: demonstrate that
Pm is a partition it remains simply to show that if n + mZ intersects n′ + mZ
nontrivially, then n + mZ = n′ + mZ. (Note that we are not suggesting that
n = n′.)

So we begin by taking k in the intersection of n + mZ and n′ + mZ. We
start by showing that n + mZ is a subset of n′ + mZ. For each x ∈ n + mZ,
x = n + ms for some s ∈ Z. Because of where we found k, we also know that
for some integers t and u, k = n + mt and k = n′ + mu. That is n = k − mt
and n′ = k −mu. Thus,

x = n + ms = (n′ − n′) + n + ms

= n′ − (k −mu) + (k −mt) + ms

= n′ + mu−mt + ms = n′ + m(s− t + u).

So we have shown that x ∈ n′ + mZ and so n + mZ ⊆ n′ + mZ. Now swapping
the roles of n and n′ we see that also n′+mZ ⊆ n+mZ and so indeed n+mZ =
n′ + mZ.2

This proves that Pm is a partition of Z.

As we claimed, there is a way to visualize partitions. For example we can

2In many situations arguments that can be repeated by simply replacing one variable with
another are not worth re-writing. The Latin phrase mutatis-mutandis is often used to express
this to a reader in an intimidating way. In truth, elegant writing, such as that of Halmos, can
achieve a brief proof without resorting to this trick. Nevertheless, this is common.
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visual the partition P3 of Z as follows.

Z · · · −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 · · ·
...

−2 + 3Z −5 −2 1 4
−1 + 3Z −4 −1 2 5
0 + 3Z −6 −3 0 3
1 + 3Z −5 −2 1 4
2 + 3Z −4 −1 2 5
3 + 3Z −6 −3 0 3
4 + 3Z −5 −2 1 4

...

Notice we have singled out with horizontal bars the three sets 0 + 3Z, 1 + 3Z,
and 2 + 3Z. These make up the partition. All others n + 3Z are simply other
names for one of these three sets, for example, notice the rows for −1 + 3Z and
2 + 3Z are identical.

The partition we introduced in Proposition-2.1.5 is incredibly useful and has
its own important notation. From now on we will always write this partition as

Z/mZ = {n + mZ : n ∈ Z}. (2.2)

In some circles this is also denoted by Z/m or even Zm.
2.7 True or False? The set {1 + mZ : m ∈ Z} is a partition of Z.

2.8 For every real number x let

x + 2πZ = {x + 2πk : k ∈ Z}.

Set R/2πZ = {x + 2πZ : x ∈ R}. Show that R/2πZ is a partition of R.
In Figure 2.1 we give a visual description of the partition we created in

Exercise 5. Notice the real number line is bent into a spiral to create the
geometric correspondence, and the vertical lines demonstrate points that are
equivalent under the definition given in Exercise 5.

Partitions are wonderful topic in their own right but our interests require that
we connect them also to external concepts and we do that first with equivalence
relations.

If E is an equivalence relation on a set X then define for each x ∈ X the
equivalence class of x, namely

[x] := {y ∈ X : xEy}. (2.3)
X/E = {[x] : x ∈ X}. (2.4)

If P is a partition on X, then for x, y ∈ X, define

x ≡P y if, and only if, ∃P ∈ P, x, y ∈ P. (2.5)

With that notation we prove that equivalence relations are essentially the same
as partitions.

Proposition 2.1.6. Fix an equivalence relation E on a set X and a partition
P on X. The following hold:

(i) X/E is a partition on X,

(ii) ≡P is an equivalence relation on X, and
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Figure 2.1: The helix is the natural way to describe the partition R/2πZ. Notice
the real line can be bent into the helix shape which winds above the unit circle.
Two points on the helix lie in the same member of the partition if, and only
if they lie, on the same vertical line – which we often call “fibers”. So in one
revolution along the edge of the helix we visit every member of the partition
exactly once. In two revolutions we visit each member twice.

(iii) E is the same equivalence ralation as ≡X/E, i.e. aEb if, and only if,
a ≡X/E b. Also, the partition P is the same as X/(≡P), i.e. P ∈ P if,
and only if, P ∈ X/(≡P).

Proof. For (i), observe that for every x ∈ X, [x] is nonempty as E is reflexive.
Furthermore, every x ∈ X lies in [x] so the first property of a partition is
satisfied.. Also, if [x] ∩ [x′] 6= ∅ then there is a y ∈ X such that xEy and
x′Ey. Therefore xEy and yEx′ so by the transitive property xEx′. Now if for
all z ∈ [x′], we have xEx′ and x′Ez so again by the transitive property xEz.
Therefore z ∈ [x] so that [x′] ⊆ [x]. By swapping the roles of x and x′ we find
also [x] ⊆ [x′]. Thus [x] = [x′]. Thus, the second property of a partition has
been proved. So X/E is a partition.

For (ii), let x ∈ X. There is a unique P ∈ P such that x ∈ P and so x, x ∈ P
which means that x ≡P x, i.e. the reflexive property holds. Next if x, y ∈ X
and x ≡P y then there is a P ∈ P such that x, y ∈ P . Thus y, x ∈ P and so
y ≡P x – the symmetric property. Finally, if x, y, z ∈ X such that x ≡P y and
y ≡P z then there are P,Q ∈ P such that x, y ∈ P and y, z ∈ Q. However this
implies that y ∈ P ∩ Q so P ∩ Q 6= ∅. Thus, P = Q and so x, z ∈ P proving
that x ≡P z – the transitive property.

Part (iii) is crucial but we leave it as an exercise which will help practice the
meaning of the notation.

2.9 Complete the proof of Proposition 2.1.6(iii).

2.10 Consider the relation ≤ on R. For x ∈ R, define [x] = {y ∈ R : x ≤ y}
and R/≤ = {[x] : x ∈ R}. This mimics what we defined above however, show
that R/≤ is not a partition. Also show that ≤ is not an equivalence relation
and so this is not a contradiction of Proposition 2.1.6(i).
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2.11 A function f : R → R is even if for all x ∈ R, f(−x) = f(x), odd if
for all x ∈ R, f(−x) = −f(x).

(i) Show that some functions f : R → R are neither even nor odd.

(ii) Let S be the set of all functions f : R → R which either even or odd.
Decide if the {f ∈ S : f is even } and {f ∈ S : f is odd } partition S.
[Hint: are some functions even and odd?]

2.1.3 Functions and partial functions
Further Reading: Jacobson
§0.3We have discovered sets and classes allow us to formalize many concepts once

known intuitively. So far we have worked with sets by relations and partitions.
The third powerful tool is the concept of a function. Indeed, functions are
perhaps the best known mathematical object after numbers and so we hope that
our following technical description will not supplant the intuition gained by years
of experience with functions. However, as we move our reasonnig increasingly
further away from real numbers and elementary functions that we can graph, it
becomes necessary to declare the formal expectations about functions.

The most familiar definition of a function is a relation from a set A to a set
B for which every a ∈ A is related to one and only one b ∈ B. We want also
the intermediate concept of a partial function.

Definition 2.1.7. A partial function f : A → B between sets (or classes) A
and B is a relation R ⊆ A×B such that:

if for some a ∈ A and b, b′ ∈ B, aRb and aRb′, then b = b′.

We say that R is well-defined when that property holds and we write f(a) = b
since no ambiguity can occur about which element of B to associate to a.

• The domain, denoted dom f , of a partial function is {a : (a, b) ∈ R}.

• The image, denoted im f , of a partial function is {b : (a, b) ∈ R}.

• The codomain, denoted codom f , of a partial function is B.

Finally, a function is a partial function whose domain is A.

Our assumptions allow us to define fibers for partial function f : A → B.
For each b ∈ B define

f−1(b) = {a ∈ dom f : f(a) = b}. (2.6)

Definition 2.1.8. A surjection is a function f : X → Y such that for each
y ∈ Y there is an x ∈ X such that f(x) = y. We also say that f is surjective or
that it is onto.

We have seen many examples of surjections already, as the following result
makes clear.

Proposition 2.1.9. Fix a set X.

(i) If f : X → Y is surjective function then

X/f = {f−1(y) : y ∈ Y }

is a partition of X.
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(ii) If P is a partition of X then define fP : X → P as follows: fP(x) =
P ∈ P if, and only if, x ∈ P . It follows that fP is a surjection and
P = X/fP .

Proof. Let f : X → Y be a surjection. For every y ∈ Y there is an x ∈ X such
that f(x) = y. Hence, x ∈ f−1(y) and so f−1(y) 6= ∅.

Next, f is a function (not a partial function) and so for every x ∈ X, there
is a value f(x) = y. Hence, f−1(y) contains x and so x ∈ f−1(y) = f−1(f(x)).

Finally, suppose that for some y and y′ in Y , f−1(y) ∩ f−1(y′) 6= ∅. Thus,
there is an x ∈ f−1(y) and x ∈ f−1(y′). This means that y = f(x) = y′ and
so y = y′. Therefore, f−1(y) = f−1(y′). We conclude that X/f is a partition.
This proves (i).

Part (ii) is left as an exercise.

2.12 Complete the proof of Proposition-2.1.9. In particular show that fP

is a function (i.e. that its domain is X and that is is well-defined). Then show
fP is surjective. Finally show that the set of fibers of fP is the set P.

2.13 Determine a surjection from R such that the induced partition R/2πZ
(as defined in Exercise 2.1.2).

Now, the precise correspondence is between equivalence, partitions, and sur-
jective functions. However, it is not too difficult to relax the surjective assump-
tion to general functions simply by observing that if f : A → B is not surjective,
then we can form a new function f ′ : A → im f where f ′(a) = f(a), for each
a ∈ A. Notice that f ′ is surjective even if f was not.

We do a similar thing to turn partial functions g : A → B into functions.
There we create a function g∗ : dom g → B such that g∗(a) = g(a), for each
a ∈ dom g. Of course, g∗ is now a function and its very definition is gleaned
from g but simply adapts the input to come from the domain.

Now because these two associated functions f ′ and g∗ are so naturally related
to the original f and g, for the most part we do not bother to issue them special
notation. So even though we used f ′ and g∗ above, we will not repeat this and
instead we will write simply f : A → im f or g : dom g → B, unless we detect
that this will produce a problem.

Finally, to every partition A/f = {f−1(b) : b ∈ B} into fibers of a surjective
function f : A → B we can create a new function, f̂ : A/f → B as follows:

f̂(f−1(b)) = b (∀b ∈ B). (2.7)

This may seem somewhat silly but we have seen that often silly notions (such
as the reflexive property) have there uses. The importance of f̂ is that it shows
us one way to rewrite a function as a composition of two. If we let f̌ : A → A/f
be defined as

f̌(a) = f−1(f(a)) (∀a ∈ A) (2.8)

then we find that f = f̂ f̌ (or rather f = f̂ ◦ f̌ in classic composition notation).
Notice that f̌ is surjective where as f̂ is invertible. In a vague sense (which
Exercise 3 below will tighten up) the two functions f and f̌ are essentailly the
same. This allows us to conclude by noticing that to induce a partition on a
set A we can specify many many possible surjections for the same partition
(Exercise 4). Therefore, although it may seem that we have said partitions are
the same as surjections, this is only true if equate all surjections in the manner
desribed in Exercise 3. In general, there are many more surjections from A than
possible partitions on A.
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2.14 Define a relation between functions as follows. Say that f : A → B is
equivalent to g : A → C if there is an invertible function h : B → C such that
hf = g (i.e. that h ◦ f = g). We write f ∼ g. Show that ∼ is an equivalence
relation on the class of all functions.

2.15 Under the equivalence ∼ above, show that if f : A → B and g : A → C
such that f ∼ g then A/f = A/g.

2.16 How many partitions are there of {1, 2, 3}? How many surjections are
there with {1, 2, 3} as the domain? Of the possible surjections from {1, 2, 3},
many different equivalence classes are there with respect to the equivalence ∼
of above?

2.2 Congruence
Further Reading: Jacobson
§1.1, §1.8Here we begin the study of equivelance as it appears in algebra. This is similar

in many ways to equivalence amongst sets except that we now must take care
to consider operations on the sets.

Definition 2.2.1. A congruence for an operation {s1, . . . , sn} on a set S is an
equivalence relation ≡ on S such that

if s1 ≡ t1, . . . , sn ≡ tn then {s1, . . . , sn} ≡ {t1, . . . , tn}.

For example, the usual equality of decimal numbers in R is a congruence for
the (binary) operation of addition. That gives us the right to write:

As x + 2 = 5 it follows that (x + 2) + (−2) = 5 + (−2).

It may not appear that we have just involved a congruence but we have. To
see it, first we use {a, b} for a + b and ≡ for equality of decimal numbers. Also
we add the additional (seemingly pointless) observation that −2 = −2, rather
−2 ≡ −2. In this way we could have written our sentence as:

{x, 2} ≡ 5,−2 ≡ 2 ⇒ {{x, 2},−2} ≡ {5,−2}.

This now reflects our formal definition of a congruence. As we should expect,
that notation is correct but tedious. In general it is perfectly sensible to continue
in the short-hand natural notations we have practiced for so long with our real
numbers. We simply include this translation as an example of how to read and
use the definition of congruence.
2.17 Define (a, b) ≡ (c, d) by ad = bc, for (a, b), (c, d) ∈ Z×Z+. Also define
a binary operation (a, b) + (c, d) = (ad + bc, bd). Show that ≡ is a congruence
for +. Notice, if write a/b instead of (a, b) then we have just described the usual
meaning of equality of fractions and addition of fractions.

2.18 Define (a, b)⊕ (c, d) = (a + c, b + d) for (a, b), (c, d) ∈ Z× Z+.

(i) Decide if = is a congruence for ⊕ (where (x, y) = (z, w) means that x = z
and y = w).

(ii) Decide if ≡ (from Exercise 1 above) is a congruence for ⊕.

The equality of decimal numbers is quite a powerful congruence as it is a
congruence for the unary operation of inversion, e.g. x = 5 so x−1 = 5−1,
and the binary operations of addition, subtraction, multiplication, division, and
exponentiation. It may seem therefore that we should generalize the meaning
of congruence to many operations. While this is certainly possible it is also not
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necessary if we bother to be modestly clever. For example, instead of thinking
of R as having two binary operations, addition and multiplication, we might
consider it has having solely one ternary operation ` : R×R×R → R such that

`(m,x, b) = m · x + b.

The letter ` should remind the reader of ‘line’ which is evidently the structure
underpinning this ternary product. Notice that we can recover addition from
` by simply looking at `(1, a, b) = 1 · a + b = a + b and we can also recover
multiplication by using `(a, b, 0) = a · b + 0 = a · b. What has happened is
that we have now forever linked the very geometric idea of a line with the very
algebraic idea of addition and multiplication. So, if we want to study decimal
equality as a congruence for both addition and multiplication we are actually
studying equality of lines. So we have a choice to either study 〈R,+, ·〉 with two
binary operations or one ternary operation `. It is simply a matter of taste but
for brevity we will elect to study congruences with respect to a single operation
at a time, allowing that operation to be ternary or n-ary if we like. For further
reading on the ternary operation of forming lines consider M. Hall The Theory
of Groups.

One last comment on operations is that they often transfer from one set
to another. For example, let X be a set. Define fun(X, R) as the set of all
functions f : X → R. We instantly have a notion of addition in fun(X, R),
namely, f + g : X → R is defined as (f + g)(x) = f(x) + g(x). We can also
define f · g : X → R so that (f · g)(x) = f(x)g(x). We call these natural
operations pointwise or componentwise operations.

2.2.1 Quotients

Our next consideration is the matter of replacing equivalence with partitions
and then also surjections. We saw that those objects offer an alternative and
robust translation of the notion of equivalence and we should like to use this
together with algebra and congruence.

Definition 2.2.2. Let 〈S, {x1, . . . , xn}〉 be a set with an n-ary operation. A
quotient Q of S with respect to {x1, . . . , xn} is a partition Q of S such that
for all P1, . . . , Pn ∈ Q, and all si ∈ Pi, there exists a unique Q ∈ Q such that
{s1, . . . , sn} ∈ Q. We denote Q as {P1, . . . , Pn}.

When a partition is a quotient of a set with an operation we sometimes say
that the partition “admits the operation”. Whenever the operation in question
is understood from the context we permit ourselves to speak of the “a quotient
of S” rather than “...a quotient of S with respect to...”.

Proposition 2.2.3. For every integer m, Z/mZ is a quotient of Z with respect
to addition.

Proof. Recall members of Z/mZ take the form x + mZ for an integer x ∈ Z.
We must show that for all x + mZ, y + mZ ∈ Z/mZ, there exists a unique
z + mZ ∈ Z/mZ such that for all x + ms ∈ x + mZ and all y + mt ∈ y + mZ,
(x + ms) + (y + mt) ∈ z + mZ. Since z + mZ is unique to x + mZ and y + mZ
we can discover the correct z by choosing to consider just x and y (i.e. letting
s = 0 and t = 0).3 Certainly, x+y = (x+y)+m ·0 and so x+y ∈ (x+y)+mZ.
Therefore, if an appropriate z exists, then we might as well assume z = x + y.
Now we show that such a choice of z = x + y is sufficient.

3This is known as the “needle-in-the-haystack” heuristic. It says, if you search for some-
thing to exist uniquely, first consider the uniqueness, then you know what the element looks
like and so the existence is probably obvious at that point.
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For all s and t, (x + ms) + (y + mt) = (x + y) + m(s + t) ∈ (x + y) +
mZ. Therefore, Z/mZ admits + and so it is a quotient of Z with respect to
addition.

2.19 Show that R/2πZ is a quotient of R with respect to addition. Is a
quotient of R with respect to a multiplication?

2.20 Show that for each integer n, Z/nZ is a quotient of 〈Z, ·〉.

2.21 Let S = R×R be the xy-plane with the usual addition of vectors, i.e.
(a, b) + (x, y) = (a + x, b + y). Let Q be the set of all lines parallel to y = 2x.
Show that Q is a quotient of 〈S, +〉.

Having tried some examples we are prepared to relate congruence to quo-
tients in the following formal result.

Proposition 2.2.4. Let ≡ be an equivalence relation on a set S with asso-
ciated partition P = S/≡. It follows that ≡ is a congruence for an opera-
tion {s1, . . . , sn} on S if, and only if, S/≡ is a quotient of S with respect to
{s1, . . . , sn}.

Proof. Let ≡ be a congruence for an operation {x1, . . . , xn} on S. Take P1

through Pn in S/≡ and also take for all i ∈ {1, . . . , n} arbitrary si, ti ∈ Pi.
Note that for each i, si ≡ ti (by the definition of S/≡). Thus, by the definition
of congruence it follows that {s1, . . . , sn} ≡ {t1, . . . , tn}. In particular, if Q is
the unique member of S/≡ which contains {s1, . . . , sn} then Q also contains
{t1, . . . , tn}. In particular, S/≡ admits the operation {x1, . . . , xn} on S and
Q = {P1, . . . , Pn}. That is S/≡ is a quotient.

Now suppose instead that a partition P admits an operation {x1, . . . , xn}
and that ≡ is the equivalence relation on S induced by P. We must show ≡ is
a congruence for the operation. So take, for each i ∈ {1, . . . , n}, si, ti ∈ S such
that si ≡ ti. These means that each si and ti lie in the same member Pi of the
partition P. As P admits {x1, . . . , xn} it follows that {s1, . . . , sn}, {t1, . . . , tn} ∈
{P1, . . . , Pn} and so {s1, . . . , sn} ≡ {t1, . . . , tn}. So ≡ is a congruence for
{x1, . . . , xn}.

2.2.2 Homomorphisms
Further Reading: Jacobson
§1.9We are now finally prepared to involve functions in our study of operations.

We should expect that the important functions will be surjections, because
these relate to equivalence relations. However, we know that not all equivalence
relations are congruences (with respect to a fixed operation). So we should not
expect that all surjections are equally useful and so we will need to introduce a
subclass of functions that have just the properties we need to create congruences
in a manner similar to how surjections produce equivalence relations. So we
begin by inspecting that process.

Let f : A → B be a function. As we saw before, we can produce from f a
natural surjective function which we still denote by f , namely f : A → im f . We
therefore induce an equivalence relation on A by writing a ≡ a′ if, and only if,
f(a) = f(a′). Now suppose that ≡ is a congruence for a binary operation {a, a′}
on A. This will mean that whenever x ≡ x′ and y ≡ y′ then {x, y} ≡ {x′, y′}.
When we write this out with the function notation we are saying:

if f(x) = f(x′) and f(y) = f(y′) then f({x, y}) = f({x′, y′}).

This property is somewhat unhelpful because it places the equality between
outputs of f and we have no operation on B which would explain a process
to combine the items in the hypothesis to arrive at the conclusion. In fact, we
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should have no expectation that a function on the set A will have anything to do
with the operation on A unless the function is somehow relating that operation
to another operation.

So now let us reconsider the problem with some richer information.

Definition 2.2.5. A homomorphism from a set S with an n-ary operation
{s1, . . . , sn} to a set T with an n-ary operation [t1, . . . , tn], is a function f :
S → T with the property that

f({s1, . . . , sn}) = [f(s1), . . . , f(sn)] (∀s1, . . . , sn ∈ S).

We sometimes denote homomorphisms by f : 〈S, {. . . }〉 → 〈T, [. . . ]〉.

2.22 Let S be the set of functions f : R → R that are even or ordd but
non-zero (i.e. there is some x ∈ R with f(x) 6= 0). Define χ : S → Z/2Z so that
χ(f) ≡ 0 (mod 2) if f is even, χ(f) ≡ 1 if f is odd.

(i) Prove that χ is a homomorphism of 〈S, ·〉 (even/odd functions under point-
wise addition) to 〈Z/2Z,+〉.

(ii) Prove that χ is a homomorphism of 〈S, ◦〉 (even/odd function under com-
position) to 〈Z/2Z, ·〉.

2.23 Let f : R → S1 where f(θ) = eiθ = cos θ + i sin θ. Decide if f is
a homomorphism from the addition of real numbers to the multiplication of
complex numbers.

2.24 Show that the determinant is a homomophism det : Mn(R) → R, for
n = 2, 3. (Later we shall explain how to do this for all n without resorting to
computations.)

We are now able to state and prove the main theorem in all of algebra. It may
appear obvious given our leadin, but its value should not be underestimated.
We will call it the Fundamental Homomorphism Theorem to place it in a league
with other power theorems such as the Fundamental Theorem of Calculus and
the Fundamental Theorem of Algebra (which incidently has nothing to do with
Algebra but rather everything to do with analysis and so it is not the subject
of this course). This theorem can be stated in other ways, such as we do in the
corollary to follow.

Theorem 2.2.6 (The Fundamental Homomorphism Theorem). Let S and T be
sets with n-ary operations {s1, . . . , sn} and [t1, . . . , tn] respectively. If f : S →
T is a homomorphism (with respect to the given operations) then the induced
partition S/f is a quotient of S and the induced functions f̌ : S → S/f and
f̂ : S/f → T are also homomorphisms.

Proof. We have already seen that every function f : S → T determines a surjec-
tive function f : S → im f and that surjective functions detemine partitions ac-
coding to their fibers, i.e S/f = {f−1(t) : t ∈ im f}. So now we must verify that
S/f is a quotient. It will suffice to show that the associated equivalence relation,
namely that s ≡ s′ if, and only if, f(s) = f(s′), is a congruence for {s1, . . . , sn}.
So let us suppose that s1, . . . , sn and s′1, . . . , s

′
n ∈ S such that for each i, si ≡ s′i.

That is, f(si) = f(s′i). We must show that {s1, . . . , sn} ≡ {s′1, . . . , s′n}. This is
seen because f is a homomorphism and therefore

f({s1, . . . , sn}) = [f(s1), . . . , f(sn)] = [f(s′1), . . . , f(s′n)] = f({s′1, . . . , s′n}).

Thus, we have verified that ≡ is a congruence for {x1, . . . , xn}. By Proposition-
2.2.4, S/f is a quotient of 〈S, {. . . }〉.

The rest follows by considering the defintions of f̂ and f̌ .
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Definition 2.2.7. An isomorphism is an invertible homomorphism whose in-
verse is a homomorphism.

Lemma 2.2.8. The inverse of an invertible homomorphism is a homomor-
phism.

Proof. Let f : S → T be a homomorphism (with respect to operations {s1, . . . , sn}
on S and [t1, . . . , tn] on T ). Now let t1, . . . , tn ∈ T . As f is invertible there are
unique s1, . . . , sn ∈ S such that f(si) = ti. Therefore, as f(f−1(t)) = t, for any
t ∈ T , it follows that

f(f−1([t1, . . . , tn])) = [t1, . . . , tn]
= [f(s1), . . . , f(sn)]
= f({s1, . . . , sn})
= f({f−1(t1), . . . , f−1(tn)}).

Observe the third line used the assumption that f is a homomorphism. So we
have shown that

f(f−1([t1, . . . , tn])) = f({f−1(t1), . . . , f−1(tn)});
f−1(f(f−1([t1, . . . , tn]))) = f−1(f({f−1(t1), . . . , f−1(tn)}));

f−1([t1, . . . , tn]) = {f−1(t1), . . . , f−1(tn)}.

In particular, f−1 is a homomorphism.

Proposition 2.2.9. Isomorphism is an equivalence relation for the class of all
sets with n-ary operators.

2.25 Isomorphism an Equivalence Prove Proposition-2.2.9.
It may seem that every function that is invertible and has some useful prop-

erty will then produce the same property for the inverse. Hence, Lemma-2.2.8
seems unsurprising. However, this is usually not the case, for example, consider
continuity.

Example 2.2.10. Let S1 = {(cos θ, sin θ) : θ ∈ [0, 2π)} be usual unit circle.
Let f : [0, 2π) → S1 be the function f(θ) = (cos θ, sin θ). It follows that f is
invertible and continuous. However, f−1 is not continuous.

Proof. The only important point to understand is that f−1 is not continuous
at (1, 0). That is, as we approach (1, 0) from above we have θ → 0. But when
we approach (1, 0) from below, θ → 2π. Hence the right-hand limit of f−1 near
(1, 0) is 0 but the left-hand limit is 2π and so there is no overall limit at (1, 0).
Therefore, f−1 cannot be continuous at (1, 0).

Corollary 2.2.11 (The First Isomorphism Theorem). Under the hypothesis of
Theorem-2.2.6, if f is surjective then f̂ is an isomorphism.

Proof. Use the Fundamental Homomorphism Theorem with Lemma-2.2.8.

2.3 Kernels

We finally encounter on one of the main attractions to groups over all other
σ-algebras.

Before considering the following result recall that for a function f : A → B,
the fibers of f are denoted f−1(b) = {a ∈ A : f(a) = b} and f induces a partion
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A/f = {f−1(f(a)) : a ∈ A}. The Fundamental Homomorphism Theorem
demonstrated that if f : G → H is a homomorphism for sets G and H with
n-ary operators, then the partition G/f is also a quotient and the function
f̂ : G → G/f given by f̂(g) = f−1(f(g)) is a homormophism. We now consider
the effect of considering groups rather than arbitrary sets with operators. The
result is stricking and pleasing.

Theorem 2.3.1. If G is a group and f : G → H is a homomorphism, then

(i) The fiber f−1(f(1)) is a group using the same operations as G, i.e. the
same product, inverses, and identity.

(ii) G/f = {gf−1(f(1)) : g ∈ G} where gf−1(f(1)) = {gk : k ∈ f−1(f(1))}.

Proof. Set K = f−1(f(1)) = {g ∈ G : f(g) = f(1)}.
(i). As G is a group it comes with three operations: the binary operation

· : G2 → G, the unary operation −1 : G → G, and the nullary (constant)
operation 1 : G0 → G. As K is a subset of G we can look at the restriction
of each of these three functions to see if they produce operations on K. First,
if x, y ∈ K then f(x) = f(1) = f(y). Therefore, f(x · y) = f(x) · f(y) =
f(1) · f(1) = f(1 · 1) = f(1). Thus, x · y ∈ K. That is, the function · now
restricts to · : K2 → K and so K has a binary operation. Secondly, f(1) = f(1)
so 1 ∈ K. Thirdly, for every x ∈ K, f(x) = f(1) and so f(x)−1 = f(1)−1

(which makes sense because we now the image of f is a group and so inverses
exist for every image element) and so f(x−1) = f(1−1) = f(1). Thus, x−1 ∈ K
and so −1 : K → K. Therefore K is a group.

(ii). Fix a fiber f−1(f(g)) ∈ G/f . We will show f−1(f(g)) = gf−1(f(1)).
First, for every x ∈ f−1(f(g)), f(x) = f(g). Therefore,

f(g−1x) = f(g)−1f(x) = f(g)−1f(g) = f(g−1g) = f(1).

Thus, g−1x ∈ f−1(f(1)). Furthermore, x = (gg−1x) = g(g−1x) ∈ gf−1(f(1)).
Therefore f−1(f(g)) ⊆ gf−1(f(1)). Second, for all y ∈ gf−1(f(1)), y = gm
where m ∈ f−1(f(1)), that is, f(m) = f(1). Thus, f(y) = f(gm) = f(g)f(m) =
f(g)f(1) = f(g ·1) = f(g). Thus y ∈ f−1(f(g)) and so gf−1(f(1)) ⊆ f−1(f(g)).

So we see

G/f = {f−1(f(g)) : g ∈ G} = {gf−1(f(1)) : g ∈ G}.

Definition 2.3.2. If G is a group and f : G → H is a homomorphism then the
kernel of f is f−1(f(1)) and denoted by ker f . We also write G/ ker f for G/f .
The elements of G/ ker f are called the cosets of ker f .

2.26 Prove under the condition of Theorem-2.3.1, we also have G/f =
{f−1(f(1))g : g ∈ G} where f−1(f(1))g = {kg : k ∈ f−1(f(1))}.

2.27 Find the kernel of the homomorphism f : Q → S1, f(a/b) = e2πia/b.

2.28 Find the kernel of the homomorphism f : Z → S1, f(n) = e2πin/12.

2.29 Let GL2(Q) be the set of invertible (2 × 2)-matrices with entries in
Q. Find the kernel of the homomorphism f : GL2(Q) → Q× (i.e. the rationals
without zero and with multiplication as the operation) where f(A) = det A.
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2.4 Further exercises

2.30 Decide if the subsets relation ⊆ is an equivalence relation on the class
of all sets.

2.31 Trivial operator. Explain what is meant when we say “Suppose
〈S, ·〉 satisfies the identity axiom and ....blah blah blah.... Thus, S = {1}.”
2.32 Say that two differentiable real functions f and g are parallel, denoted
f‖g, if df

dx = dg
dx .

(i) Is parallel is an equivalence relation?

(ii) Is parallel a congruence for addition of differentiable real functions?

(iii) Is parallel a congruence for multiplication of differentialble real functions?

2.33 Let R2 = R × R be the xy-plane with vector addition. Prove that

for any (2× 1)-matrix
[
a
b

]
, the function f(x, y) = [x, y]

[
a
b

]
is a homomorphism

from 〈R2,+〉 to 〈R,+〉.
2.34 Unique trivial operator. Prove that if 〈S, ·〉 and 〈T, ·〉 are satisfy the
identity axiom and both sets S and T have size 1 then there is an isomorphism
from S to T .

2.35 Unital homomorphisms. True or False? Suppose that f : 〈S, ∗〉 →
〈T,#〉 is a homomorphism and that both S and T have identities. Explain what
it means when we say f(1) = 1. Is it true that f(1) = 1?

2.36 Is the transpose function on square matrices a homomorphism of the
addition of matrices? What about the multiplication of matrices?

2.37 Fix three sets 〈S, {s1, . . . , sn}〉, 〈T, [t1, . . . , tn]〉, and 〈U, /u1, . . . , un/〉
with n-ary operations. Prove that if f : S → T is a homomorphism and g : T →
U is a homomorphism, then g ◦ f is a homomorphism.

2.38 Prove that if Q is a quotient of 〈S, {s1, . . . , sn}〉 and f : S → T is
a surjective homomorphism to 〈T, [t1, . . . , tn]〉, then f(Q) = {{f(s) : s ∈ Q} :
Q ∈ Q} is a quotient of 〈T, [t1, . . . , tn]〉.
2.39 Polarizitaion Let 〈R,+〉 be the real numbers under ordinary addition
of decimal numbers. If {s} is a unary operator on R then we can produce a new
binary operation ? by setting

a ? b = {a + b} − {a} − {b} (∀a, b ∈ R).

Prove that if {s} = s2, then 〈R, ?〉 is isomorphic to 〈R, ·〉.

2.40 Let f : R2 → R be defined by f(x, y) = (x, y)
[
−1
3

]
.

(i) Prove that f is surjective.

(ii) Describe in words what the equivalence relation on R2 is produced by f .

(iii) Decide if the the equivalence relation is a congruence of 〈R2,+〉 (the usual
addition of vectors).

2.41 Let F = Q × Q. We know that the usual coordinate comparision
(a, b) = (c, d) if and only if a = c and b = d makes an equivalence relation on
F . If we define a binary operation as follows

(a, b) · (c, d) = (ac + 2bd, ad + bc);

then show that = is a congruence for this operation.
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Motivation

In this chapter we study the second fundamental method to create new algebras
in a variety, the method of direct products. Direct products have undergone
several reinterpretations. The first recorded us of the name direct product was
in 1886 when Otto Hölder’s classification of various small groups. Later in
1909 Wedderburn published the first proof that direct products are essentially
unique. That encouraged mathematicians to consider them as a useful means
to exam groups. Remak, Krull, Schmidt, Fitting, Kurosh, Azumaya, and Ore
each offered stronger and simpler proofs of the results. Levi and Birhkoff saw
the value of direct products to varities and finally Ellenberg and MacLane fit
the entire construction into their much more general system of categories.

3.1 Quotients and Free σ-algebras
Further Reading: Jacobson
§1.11. At last we create something universal (which is the point of Universal Algebra)!

The next theorem might appear easy to prove but that is a result of good
forethought in choosing definitions.

Theorem 3.1.1. Let G and H be sets with operators of signature σ. Let Φ be
a set of σ-equations. If G ∈ V(Φ) and f : G → H is an epimorphism (for all
the operations in σ) then H ∈ V(Φ).

Proof. For each φ(x1, . . . , x`) = γ(x1, . . . , x`) be a sentence in Φ. For all
h1, . . . , h` ∈ H, as f is surjective there are g1, . . . , g` ∈ G such that for each i,
f(gi) = hi. First, because f is a homomorphism for every operation in σ, and
φ is a conjunction of operations in σ, it follows that

f(φ(g1, . . . , g`)) = φ(f(g1), . . . , f(g`)).

A same holds if we replace φ with γ. Hence,

φ(h1, . . . , h`) = φ(f(g1), . . . , f(g`))
= f(φ(g1, . . . , g`))
= f(γ(g1, . . . , g`))
= γ(f(g1), . . . , f(g`))
= γ(h1, . . . , h`).

Notice in the middle we exchanged φ for γ which follows as we know G ∈ V(Φ).
Thus, H ∈ V(Φ).

We often communicate Theorem-3.1.1 by saying that “Varieties are closed
to homomorphic images.” The word closed simply means that if an object
has the property we mention then the set we mention contains that object.
In another context we might say “The integers are closed to subtract but the
natural numbers are not.” As a community we have resisted the temptation
to use the word “open” to describe sets and classes that are not closed to a
specified property. Thus, we have avoided suggesting there is a topological
process involved.
3.1 Show that a variety is closed to quotients.

3.2 Let σ = {·, 1} and Φ = {x · 1 = x = 1 · x} be the usual equation
defining the identity axiom. Without using Theorem-3.1.1, show directly that
if G and H are sets with binary operations, G ∈ V(Φ), and f : G → H is an
epimorphism, then H ∈ V(Φ).
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3.3 Let σ = {·, 1} and Φ = {x · y = y · x} be the usual equation for
commutativity. Without using Theorem-3.1.1, show directly that if G and H
are sets with binary operations, G ∈ V(Φ), and f : G → H is an epimorphism,
then H ∈ V(Φ).

We now understand that quotients and homomorphic images of an element
in a variety are guaranteed to lie back in the variety. So thinking universally we
ask, is there some member F in a variety V that is so large that all the members
in V are simply quotients of it? If so, we could get by studying just this one
master member. The problem however is in Russell’s Paradox. There is not set
of all sets and so we cannot generally expect that we an construction a set F
large enough to have surjections onto all other sets in V. But the idea is not
entirely invalid. Instead we ask, can we make an F which covers all members
of V up to a fixed size?

Definition 3.1.2. An algebra F with a function ι : X → F from a set X is
called free on X, with respect to a variety V, if whenever A ∈ V and f : X → A
is a function, there is a unique homomorphism f̂ : F → A such that

∀x ∈ X, f(x) = f̂(ι(x)).

It often helps to visualize the functions involved.

X
ι

~~~~
~~

~~
~

f

  A
AA

AA
AA

A

F
f̂ +3 A.

We use a double-bared function to indicate that this function is unique with
respect to the others and is implied to exist by the others. The idea that a
combination of functions is enough to predict the existence and uniqueness of
another is known as a Universal Mapping Property. Notice that X is only a
set, not an algebra, so it makes no sense to ask if ι and f are homomorphisms.
Indeed they are only functions. However, f̂ is homomorphism.

For example. Suppose we look at the variety V = V(x + y = y + x, x +
(y + z) = (x + y) + z), i.e. the variety of signature {+} where + satisfies
the associative and commutative laws. Notice 〈N,+〉 is in this variety, as are
〈Z/NZ,+〉 for every N ∈ Z, 〈Q,+〉, 〈R, ·〉, and many other objects. Let us take
X = {a} and ι : X → N to be f(a) = 1. We will demonstrate the N, together
with ι, is free on X (in the variety V).

First consider an example. Suppose thatf : X → Z/12Z be the function
f(a) = 5. We must decide if there is a homomorphism f̂ : N → Z/12Z which
behaves like f(x) = f̂(ι(x)) for each x ∈ X. As X = {a} we have very little to
test. We simply need

5 = f(a) = f̂(ι(a)) = f̂(1).

It may seem impossible that by specifying only one output for f̂ we now hope
to describe where each of the infinitely many inputs in N are headed. However,
we must recall that f̂ is to be a homomorphism! Thus, we are forced to make
other outputs agree with our first choice that f̂(1) = 2. So we find:

f̂(2) ≡ f̂(1 + 1) ≡ f̂(1) + f̂(1) ≡ 5 + 5 ≡ 10 (mod 12);

f̂(3) ≡ f̂(2 + 1) ≡ f̂(2) + f̂(1) ≡ 10 + 5 ≡ 3;

f̂(n + 1) ≡ f̂(n + 1) ≡ f̂(n) + f̂(1) ≡ 2n + 2 ≡ 2n + 2 ≡ 2(n + 1).
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So in the end we had not choice in where the remaining values of N are sent
under f̂ . So we have defined a function f̂ : N → Z/12Z where f̂(n) = 2n. This
in fact a homomorphism because

f̂(n + m) ≡ 2(n + m) ≡ 2n + 2m ≡ f̂(n) + f̂(m) (mod 12).

Now we consider the general case. Suppose that 〈A,+〉 ∈ V and f : {a} → A

is a function. Define f̂ : N → A as follows:

f̂(1) = f(a)

f̂(n + 1) = f̂(n) + f(a) (∀n ∈ N).

This does define a function. Furthermore, it defines a homomorphism, however,
the proof of that is a somewhat involved induction.

To introduce free objects in semigroups, monoids, and groups we have to
first describe what algebraist refer to as words. Despite the following tedious
definition, as the example to follow shows, the idea is quite natural.

Definition 3.1.3. Given a set X, a word of length n ∈ N is a function w :
{1, . . . , n} → X. We call X the alphabet of the word w. The concatenation of
words w : {1, . . . , n} → X and u : {1, . . . ,m} → X is the word wu : {1, . . . , n +
m} → X defined by:

wu(i) =
{

w(i) i ≤ n;
u(i− n) i > n.

The empty-word is the function ε : ∅ → X (it has no points in the domain).

Example 3.1.4. For the set a, b, c, d, . . . , x, y, z a word can be represented as
a common word. For instance, alleycat is a word of length 8. The implied

function is
(

1 2 3 4 5 6 7 8
a l l e y c a t

)
. Notice this is the concatenation of the

words alley and cat. The concatenation of cat and alley is catalley which
is obviously not the same.

Unlike language, words in algebra do not need to be in the dictionary they
can be any assortment of letters, e.g. adkfj is a word of length 5. Notice,
Häagen Daz is not a word over the set a, b, c, . . . , x, y, z because H, ä, D and the
space are not in the set. This could become a word over a different set.

We usually write words w : {1, . . . , n} → X simply as w(X). For example,
w(a, b, c, . . . , x, y, z) = alleycat or in general if X = {x1, x2, x3} we might de-
scribe a word as w(x1, x2, x3) = x1x2x1x3x2. This encourages us to think of the
letters in the alphabet X as variables which might later substitute with values.

Theorem 3.1.5. In the variety S of semigroups, for each set X = {x1, x2, . . . },
the set FrS[X] of non-empty words in X equipped with concatenation as a product
is a free semigroup on X. Furthermore, if S is a semigroup and f : X → S is a
function, i.e. for each xi ∈ X we assign f(xi) = si ∈ S, then define the required
unique homomorphism f̂ : FrS[X] → S as follows:

f̂(w(x1, x2, . . . ) = w(f(x1), f(x2), . . . ) = w(s1, s2, . . . )

for every word w(x1, x2, . . . ) ∈ FrS[X].

Proof. First we observe that F := FrS[X] is a semigroup because given non-
empty words w : {1, . . . , `} → X, u : {1, . . . ,m} → X, and v : {1, . . . , n} → X, we
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have

((wu)v)(s) =
{

(wu)(s) 1 ≤ s ≤ ` + m
v(s− (` + m)) s > ` + m

=

 w(s) 1 ≤ s ≤ `
u(s− `) ` < s ≤ ` + m

v(s− (` + m)) s > ` + m

=
{

w(s) 1 ≤ s ≤ `
(uv)(s− `) ` < s

= (w(uv))(s).

Although necessary, the proof of associativity is also evident by considering
examples, say if w(a, b, c, . . . , x, y, z) = my, u(a, b, c, . . . , x, y, z) = alley, and
v(a, b, c, . . . , x, y, z) = cat, then

(wu)v = (myalley)cat = myalleycat = my(alleycat) = w(uv).

Next we demonstrate that F is free on X, which means we confirm F satisfies
the Universal Mapping Property for Free Algebras (UMP4FA). Let S be a semi-
group and f : X → S a function. Suppose there is a homomorphism f̂ : F → S
such that for all x ∈ X, f̂(x) = f(x) (recall x ∈ F as x is a word in the alphabet
X). If w : {1, . . . , n} → X is a word of length n in F then w = w(1)w(2) · · ·w(n)
– i.e. the word is the concatenation of its letters, for example cat = c · a · t.
Each w(i) ∈ X and so f̂(w(i)) = f(w(i)). Together we find

f̂(w) = f̂(w(1)w(2) · · ·w(n))f̂(w(1))f̂(w(2)) · · · f̂(w(n))f(w(1))f(w(2)) · · · f(w(n)).

Said differently, if there is a homomorphism f̂ : F → S such that for all x ∈ X,
f̂(x) = f(x), then for every word w(x1, x2, . . . )

f̂(w(x1, x2, . . . ) = w(f(x1), f(x2), . . . ).

Now that we have confirmed that at most one homomorphism can exist with
the property we seek, it remains to claim that f̂ actually exists. Clearly f̂ is a
function so it remains to show f̂ is a homomorphism.

f̂(w(x1, x2, . . . )u(x1, x2, . . . )) = f̂((wu)(x1, x2, . . . ))
= (wu)(f(x1), f(x2), . . . )
= w(f(x1), f(x2), . . . )u(f(x1), f(x2), . . . )

= f̂(w(x1, x2, . . . ))f̂(u(x1, x2, . . . )).

Hence f̂ is a homomorphism and our proof is complete.

Corollary 3.1.6. In the variety M of monoids, for each set X, the set FrM[X] =
FrS[X] ∪ {ε} of words in X, a form ‘empty-word’ ε, with concatenation as a
product (where also wε = w = εw for all w ∈ FrS[X]) is a free monoid on X.

Proof. Use the unique homomorphism guaranteed by the Universal Mapping
Property of Free Semigroups and then send the empty-word in FrM[X] to the
identity in the target monoid.

Definition 3.1.7. For a word w : {1, . . . , n} → X, let wrev : {1, . . . , n} → X be
wrev(i) = w(n− i).

The reversal of a word is obvious with examples. If w(a, b, c, . . . , x, y, z) =
alley then wrev(a, b, c, . . . , x, y, z) = yella.
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Corollary 3.1.8. In the variety G of groups, for each set X, the set FrG[X] =
FrMX∪ X−1] of words in X an in the formal copy X−1 of X, modulo the congru-
ence relation w(X)w(X)rev ≡ ε, is a free group on X.

Proof. Let G be a group and f : X→ G a function. From the Universal Mapping
Property for Free Semigroup S = FrS[X ∪ X−1] we have the diagram:

X
f

  A
AA

AA
AA

AoO

��~~
~~

~~
~

S
f̂ +3 G.

As ≡ is a congruence relation on the semigroup S so there is an induced quotient
F = FrG[X] and also by the Fundamental Homomorphism Theorem there are

homomorphisms ˆ̂
f and ˇ̂

f as in the diagram below.

X
f

  A
AA

AA
AA

AoO

��~~
~~

~~
~

S
f̂ +3

ˆ̂
f ��@

@@
@@

@@
G.

F

f̌

>>}}}}}}}}

The congruence relation we have imposed makes the quotient have inverses, so
F is a group. In particular we obtain

X
f

  A
AA

AA
AA

AoO

~~~~
~~

~~
~

F
ˇ̂
f +3 G.

And so F is a free group.

Definition 3.1.9. Fix a variety V. For a G ∈ V, G is said to be generated by a
subset X there is an F ∈ V which is free on X and such that the homomorphism
f̂ : F → G given by the inclusion f : X → G (i.e. f(x) = x) is an epimorphism.

3.2 Direct Products

We have used operations on sets and now we begin to involve operations on
varieties. The most natural operation is that of a direct product. It hinges on
the concept of a Cartesian product of sets. The best known example is the xy-
plane which was introduced by Rene des Cartes as a scheme to render functions
f : R → R as images by plotting the points {(x, f(x) : x ∈ dom f}. The name
Cartesian product derives from his invention. We start there.

3.2.1 Cartesian Products

For sets A and B we write A×B for the set of ordered pairs. So the xy-plane is
denoted R× R or sometimes R×2 or simply R2. Later with a set C we can ask
for (A×B)×C or A× (B ×C). These sets are roughly the same idea but are
nevertheless not equal. For example, the first has elements of the form ((a, b), c)
whereas the second set has elements of the form (a, (b, c)). There is an invertible
function (A × B) × C → A × (B × C), namely ((a, b), c) 7→ (a, (b, c)); hence,
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in that way the Sets are strongly related. This leads many authors to declare
somewhat informally that the Cartesian product of sets is associative. This is
not entirely true becuase we just mentioned A× (B × C) 6= (A× B)× C, it is
only true if we involve the equivalence relation ∼ on sets which says, X ∼ Y if
and only if there is an invertible function f : X → Y . In that notation we can
legitimately write

A× (B × C) ∼ (A×B)× C.

However, ∼ goes too far in most cases. For example, there is an invertible
function from N to Z (e.g. f(n) = n/2 if n is even and f(n) = (1 − n)/2 if n
is odd.) Indeed that allows us to make an invertible function N × N = Z × Z.
Likewise R is in one-to-one correspondence with (0, 1) but yet again we do
not seriously consider the entire xy-plane R×2 as the same as the unit square
(0, 1)×2. So we need a more subtle solution.
3.4 Construct an invertible function f : R → (0, 1) and also g : R2 → (0, 1)2.

The way out of the associativity problem for Cartesian products is to intro-
duce n-ary Cartesian products on sets.

A×B = {(a, b) : a ∈ A, b ∈ B}
A×B × C = {(a, b, c) : a ∈ A, b ∈ B, c ∈ C}

A×B × C ×D = {(a, b, c, d) : a ∈ A, b ∈ B, c ∈ C, d ∈ D}
...

There are technical difficulties in doing this. First, what is meant by (a, b, c, d)
and second, what if we want a product of an infinite number of sets? Using
functions this becomes evident.

Definition 3.2.1. Let S be the class of sets.

(i) A family F (or indexed-set) is a set I and a function F : I → S. We
usually write Fi (instead of the usual F (i)) and write F = {Fi : i ∈ I}.

(ii) To families F = {Fi : i ∈ I} and G = {Gj : j ∈ J} are said to be equal
when there is an invertible function t : I → J such that for all i ∈ I,
Fi = Gt(i).

We introduced families in a somewhat pompous manner but the concept is
basic. With sets we have {A,A, B,A} = {A,B} because equality of sets occurs
whenever two sets have the same members. However families, even though they
are denoted as sets, are actually functions. Therefore the family F = {A =
F1, A = F2, B = F3, A = F4} is not equal to to the family G = {A = G1, B =
G2} because the functions implied here are rather distinct. In the first we have
F : {1, 2, 3, 4} → {A,B} and in the second we have G : {1, 2} → {A,B}. So
using families we have the option to repeat terms as often as we like. The
equivalence of families shows that we do not care about the order of the terms,
just that the count be the same. This still introduces certain oddities when the
index sets are infinite but we leave that for future discussion.

Remark 3.2.2. Recall that it is sufficient in most setting to give the name of a
function and not to describe its domain or codomain. This brevity is especially
welcome (though uncommon) with families. For example, it is permissible to
write:

Given a family F = {Fi : i ∈ I}, for each i ∈ I, Fi...

On the other-hand, there is a modest elegance in writing
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Given a family F , for each F ∈ F ,...

However, it is important to stress in the latter notation that F ∈ F means to
run through all the values of the function including any repeated values. This
simply avoids extra subscripts which soon become a nuisances. The correct
understanding that F ∈ F means to include multiple copies is made clear by
having first indicated that F is a family and not simply a set.

Definition 3.2.3. The Cartesian product
∏
F =

∏
F∈F F of a family F is the

set of all function f : F →
⋃

F∈F F such that for every F ∈ F , f(F ) ∈ F . For
each F ∈ F , the projection function πF :

∏
F → F is defined by πF (f) = f(F ).

When a family F has a small index set, e.g. if I = {1, 2, 3}, we usually
denote

∏
i∈I Fi by F1 × F2 × F3. In the usual coordinate notation the three

projections here would be π1(a, b, c) = a, π2(a, b, c) = b, and π3(a, b, c) = c.
These definitions can be tedious and so we take a moment to explore it in a

very gentle setting.
Example 3.2.4. Fix sets A = {1, 2, 3} and B = {α, β}, and C = {?, ◦}. Let
F = {A,B, C, B} be a family (the implied index set is I = {1, 2, 3, 4}). Then∏
F is the set of functions

f : {1, 2, 3, 4} → (A ∪B ∪ C ∪B) = {1, 2, 3, α, β, ?, ◦} (3.1)

where f(1) ∈ {1, 2, 3}, f(2) ∈ {α, β}, f(3) ∈ {?, ◦}, and f(4) ∈ {α, β}. For
instance:

(i)
(

1 2 3 4
2 β ? α

)
is a function in

∏
F . This function represents the 4-tuple

(2, β, ?, α) ∈ A×B × C ×B.

(ii)
(

1 2 3 4
3 ◦ ? α

)
is a function {1, 2, 3, 4} → {1, 2, 3, α, β, ?, ◦} but not in∏

F because it assigns 2 to ◦; yet, ◦ /∈ F2 = {α, β}. This function repre-
sents the 4-tuple (3, ◦, ?, α) which is not in A×B × C ×B, rather, it lies
in A× C × C ×B.

(iii)
(

1 2 3
2 β ?

)
is a function {1, 2, 3} → A∪B∪C∪B; yet, it lies in A×B×C

and not in A×B × C ×B. It represents a 3-tuple (2, β, ?).

(iv)
(

1 2 3 4
4 5 6 7

)
is not in

∏
F as it does not describe a function {1, 2, 3, 4} →

{1, 2, 3, α, β, ?, ◦}. This represents the 4-tuple (4, 5, 6, 7) which is entirely
unrelated to A×B × C ×B.

Example 3.2.5. (i) The usual xy-plane R2 is the Cartesian product of R with
R. More formally, the family F : {x, y} → S with Fx = R and Fy = R has
{f : {x, y} → R : f(x), f(y) ∈ R}.

(ii) For sets X and Y , the set fun(X, Y ) of all functions f : X → Y is also∏
x∈X Y . The implied family here has X as the index set and for every

x ∈ X Fx = Y . This Cartesian product is often abreviated by Y X . E.g.
if X = {1, 2} then Y X = Y × Y .

Theorem 3.2.6 (Universal Mapping Property for Cartesian Products). If F =
{Fi : i ∈ I} is a family of sets, T is a set, and {fi : T → Fi : i ∈ I} is a family
of functions on sets1 then there is a unique function f : T →

∏
F such that

(∀i ∈ I,∀t ∈ T ), πi(f(t)) = fi(t).
1Recall that a function f : A → B between sets A and B is also a set, i.e. a subset of

A×B. So discussing families of functions between sets is permissible.
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As a diagram of functions this means:∏
F πi // F.

T

f
]eCCCCCCC

CCCCCCC fi

??��������

(We use the double-bar function to indicate that function is unique with respect
to all others in the diagram.) The function f is often denoted

∏
F∈F fi.

Proof. We need a function f : T →
∏
F . The elements of

∏
F are themselves

functions. Therefore such a function f takes as input an element t ∈ T and
outputs a function f(t) : I →

⋃
i∈I Fi. The recipe for this function is described

by the equation is must satisfy. So we define:

f(t)(i) = fi(t) (∀t ∈ T,∀i ∈ I).

For each t ∈ T and i ∈ I, fi(t) ∈ Fi (as fi : T → Fi) and so indeed f(t) : I →⋃
i∈I Fi and for each i ∈ I, f(t)(i) ∈ Fi which shows that f(t) ∈

∏
F . This

explains that f is indeed a function T →
∏
F . The property required of f is

satisfied as well since

πi(f(t)) = f(t)(i) = fi(t) (∀t ∈ T,∀i ∈ I).

The Universal Mapping Property for Cartesian products (UMP4CP) may
seem abstract but the concept is easy to following with a picture. Suppose
we have f(x) = x2 and g(x) = x − x3 as functions [0, 1] → R. These are
already enough data to demonstrate the UMP4CP. First we identify the sets
involved. The functions f, g : [0, 1] → R will form the family of functions we
need in UMP4C. Thus, T = [0, 1] and F = {R, R}. The product we form is∏
F = R× R. So we setting up the following diagram of functions:

R R× R
π1oo π2 // R

[0, 1].
f

ggOOOOOOOOOOOOO g

77ooooooooooooo
f×g

KS (3.2)

Now we define (f × g) : [0, 1] → R2 by (f × g)(t) = (f(t), g(t)). The result is
that we create a parametric equation in the yz-plane. If we view this parametric
equation in 3-dimensions then we not only see its image but we see the natural
projections π1 and π2 send this image pack to the graphs of f and g in the xy
and xz-planes respectively; cf. Figure-3.1.
3.5 Let f : R → R be f(x) = x2 and g : R → R be g(x) = 1− x. Construct
explicitly the function h : R → (R × R) guaranteed by the Universal Mapping
Property of Cartesian products. Then graph h in the xyz-plane along with the
projections of h to f in the xy-plane and h to g in the xz-plane.

Over time it has become evident that for algebra the properties we need
from a Cartesian product can mostly be derived from their Universal Mapping
Property. This has lead to a re-definition of sorts in which we allow multiple
differing descriptions of direct products to co-exist so long as they all display
a Universal Mapping Property. The following exercise demonstrates how this
might be encountered.
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Figure 3.1: The functions f and g; then f × g drawn parametrically; then f , g,
and f × g drawn together to show how the projections relate to f × g.

3.6 Fix a family {A1, A2, A3} of sets. The usual construction (A1×A2)×A3 =
{((a1, a2), a3) : a1 ∈ A1, a2 ∈ A2, a3 ∈ A3} has projections πi : (A1 × A2) ×
A3 → Ai, i ∈ {1, 2, 3}, where πi((a1, a2), a3) = ai. Show that if {fi : T →
Ai : i ∈ {1, 2, 3}} is a family of functions, then there is a unique function
f : T → (A1 ×A2)×A3 such that for every i ∈ {1, 2, 3},

πi(f(t)) = fi(t) (∀t ∈ T,∀i ∈ I).

Would this be true of A1 × (A2 ×A3)?
We are prepared to treat products as equivalent if they both have a Universal

Mapping Property for Cartesian Products. Yet, we must be careful not to re-
introduce the unwanted behavior we had before, such as making R×R the same
as (0, 1)× (0, 1). The following theorem makes the meaning of “same” precise.

Theorem 3.2.7. Fix a family F = {Fi : i ∈ I}. Suppose 〈
∏
F , πi :

∏
F → Fi〉

and
〈∏′ F , π′i :

∏
F → Fi

〉
are two sets with projections such that both behave as

Cartesian products in that they both satisfy the Universal Mapping Property for
Cartesian Products (i.e. for every family {fi : T → Fi : i ∈ I} there are unique
functions f : T →

∏
F and f ′ : T →

∏′ F such that for all i, πi ◦ f = fi and
π′i◦f ′ = fi). It follows that there is a unique invertible function h :

∏
F →

∏′ F
such that for every i ∈ I, π′i ◦ h = πi and πi ◦ h−1 = πi.

The statement of Theorem-3.2.7 is long and difficult to process. However,
the concept it conveys is that that two different constructions of a product
which has the UMP4CP will be essentially the same. For example, we could
let F = {A1, A2, A3} and let

∏
F = A1 × A2 × A3 be the Cartesian product

we defined above so that πi(a1, a2, a3) = ai. Then for the second product we
can use (A1 × A2) × A3 with the projections π′i((a1, a2), a3) = ai. These are
different sets and so different products. Yet both have the Universal Mapping
Property for Cartesian Products and so the theorem asserts that they are not
in-fact that different.

Proof. Using the functions πi and π′i we can setup the information we need to
apply the Universal Mapping Property for Cartesian Products. Specifically, we
let T =

∏′ F in the diagram below and from the UMP4CP applied to
∏
F ,

we obtain a unique function h making the diagram commute, that is, making
πi ◦ h = π′i for each i ∈ I.∏

i∈I Fi
πi // Fi

∏′
i∈I Fi.

h

ai JJJJJJJJJ

JJJJJJJJJ π′i

<<xxxxxxxxx
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Next we reverse the roles of πi and π′i and use the UMP4CP applied to
∏′ F

(instead of
∏
F as we did before). This gives us a unique function g :

∏
F →∏′ F such that π′i ◦ g = πi, for each i ∈ I. We capture this in the following

diagram. ∏′
i∈I Fi

π′i ""F
FF

FF
FF

FF

∏
i∈I Fi

g
5=ttttttttt

ttttttttt
πi // Fi.

Now we consider these two diagrams together and by composing g and h we
arrive at the diagram: ∏′

i∈I Fi

π′i ##F
FF

FF
FF

FF

Fi

∏′
i∈I Fi

g◦h

KS

π′i

<<xxxxxxxxx

Notice that g ◦ h is the unique function to fit that diagram, i.e. to have π′i ◦
(g ◦h) = π′i, because we built g and h uniquely to have that property. However,
there is another function which works here also, namely the identity function 1
in

∏′
i∈I Fi also has π′i ◦ 1 = π′i.∏′

i∈I Fi

π′i ##F
FF

FF
FF

FF

Fi

∏′
i∈I Fi

1

OO

π′i

<<xxxxxxxxx

Since g ◦h is the unique solution but we find 1 also works we are forced to agree
that g ◦ h = 1.

This is half-way towards showing that g and h are inverses. It remains to
show that h ◦ g is the identity on

∏
F . But for that notice we could rewrite

the argument above swapping
∏
F with

∏′ F and we would arrive therefore
at h ◦ g = 1.Hence, in fact g and h are inverses and so the two products are
uniquely related by an invertible function.

Because of Theorem-3.2.7 we are now prepared to make the following bold
and versatile compromise with Cartesian products. Instead of insisting that our
definition in Definition-3.2.3 is the one and only possible meaning of a Cartesian
Product, we instead make room for others such as (A × B) × C etc. by using
the following weaker requirement.

Definition 3.2.8. For a family F , a Cartesian Product for F is a set P (F)
together with a family of functions {πF : P (F) → F : F ∈ F} such that
whenever {fF : T → F : F ∈ F} is a family of functions, there is a unique
function f : T → P (F) such that πF ◦ f = fF , for each F ∈ F .

This definition should remind you of how we defined Free algebras in Definition-
3.1.2 in that the definition is not a specific set but instead it is Universal Mapping
Property about the sets and their functions.
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3.7 True or False? Using the new definition of Cartesian products, is it true
that R× R is the same as (0, 1)× (0, 1)?

3.2.2 Direct Products

Following on the successful creation of Cartesian products for arbitrary families
of sets we do the same for families of sets with operations. There is one sensible
restriction. If we have sets with operations that we whish to combine to make
one larger sets with operations it makes sense that the initial sets should have the
same signature for their operations. That is, we wont take Cartesian products of
〈S, +, ·, 0〉 with 〈T, {t1, . . . , t11}〉 as the resulting set S × T will have no obvious
operations. So now suppose 〈S, {x1, . . . , xn}〉 and 〈T, [t1, . . . , tn]〉 are sets with n-
ary operations. Immediately we see how to equip S×T with an n-ary operation
as follows:

/(s1, t1), . . . , (sn, tn)/ = ({s1, . . . , sn}, [t1, . . . , tn]). (3.3)

To be very concrete: the set Q× (Z/12Z) has the binary operation of addition
defined as follows:

(a/b, x + 12Z) + (c/d, y + 12Z) =
(

ad + bc

bd
, (x + y) + 12Z

)
. (3.4)

Of course we could use other binary operation on these two sets instead of
addition, for example creating:

(a/b, x + 12Z) + (c/d, y + 12Z) =
(ac

bd
, (x + y) + 12Z

)
. (3.5)

This underscores how important it is to have previously agree on the operations
implied which is usually easiest by selecting a common signature for algebra we
seek to study.

Now to establish an operation on larger Cartesian products we much ensure
that the definition is reliable. This is achieved with the following technical result
but which essentially says the same thing we have just demonstrated above.

Lemma 3.2.9. There is a unique invertible function h :
(∏

F∈F F
)n →

∏
F∈F Fn

such that for all F ∈ F , πF n ◦ h = (πF )n where (πF )n =
∏n

i=1 πF .

3.8 Prove Lemma-3.2.9. [Hint: use the Universal Mapping Property of
Cartesian products.]

Theorem 3.2.10. If F is a family of sets such that each F ∈ F has an n-ary
operation {x1, . . . , xn}F then there is a unique n-ary operation {x1, . . . , xn} on∏
F such that for each F ∈ F ,

πF ({x1, . . . , xn}) = {πF (x1), . . . , πF (xn)}F (∀x1, . . . , xn ∈
∏

F).

Proof. This proof asks us to consider three Cartesian products:
∏

F∈F Fn,(∏
F∈F F

)n, and
∏
F . First, by Lemma-3.2.9 there is a unique invertible func-

tion h :
(∏

F∈F F
)n →

∏
F∈F Fn where for all F ∈ F , πF n ◦ h = πn

F .
For each F ∈ F , we denote the operation {x1, . . . , xn}F as a function fF :

Fn → F . Now consider the family Fn = {Fn : F ∈ F}. If we form the
Cartesian product

∏
Fn =

∏
F∈F Fn then we obtain also projection maps πF n :∏

Fn → Fn. We may also form the Cartesian product
∏
F . For each F ∈ F ,

we apply the Universal Mapping Property of Cartesian products to the data F
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together with the family functions {fF ◦ πF n : F ∈ F}. This determines, for
each F ∈ F , a unique function g :

∏
Fn →

∏
F such that πF ◦ g = fF ◦ πF n .

Now define the n-ary operation on
∏
F as follows:

{x1, . . . , xn} = g(h(x1, . . . , xn)) (∀x1, . . . , xn ∈
∏

F). (3.6)

It follows that for every F ∈ F ,

πF ({x1, . . . , xn}) = πF (g(h(x1, . . . , xn))) (3.7)
= (πF ◦ g)(h(x1, . . . , xn)) (3.8)
= (fF ◦ πF n)(h(x1, . . . , xn)) (3.9)
= fF ((πF n ◦ h)(x1, . . . , xn)) (3.10)
= fF (πn

F (x1, . . . , xn)) (3.11)
= fF (πF (x1), . . . , πF (xn)) (3.12)
= {πF (x1), . . . , πF (xn)}F . (3.13)

If you have been reading the proof of Theorem-3.2.10 it may take some time
to arrange all the behavior. This is not uncommon of such abstract proofs.
A useful device in tracking the process is to draw a picture along side which
illustrates the various functions as they are introduced. This is a dynamic
process so it is difficult to include in a text. The process might look like the
following sequence of diagrams.

We begin with some initial functions.

F

∏
Fn

fF ◦πF n

77nnnnnnnnnnnnn

πF n
// Fn.

{x1,...,xn}F

OO (3.14)

We use these to create the functions {fF ◦ πF n : F ∈ F} – which does not
depend on a Universal Mapping Property. Next using the Universal Mapping
Property on

∏
F to produce the function g induced from {fF ◦ πF n : F ∈ F}.

So now we have: ∏
F

πF

��
F

∏
Fn

g

>>}}}}}}}}}}}}}}}}}} fF ◦πF n

77nnnnnnnnnnnnnn

πF n
// Fn.

{x1,...,xn}F

OO

(3.15)

Using Lemma-3.2.9 we obtain a function h which fits into the diagram:

(
∏
F)n

πn
F

!!B
BB

BB
BB

BB
BB

BB
BB

BB
BB

h

��

∏
F

πF

��
F

∏
Fn

πF n
// Fn.

{x1,...,xn}F

OO

(3.16)
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Using h we define {x1, . . . , xn} as g ◦ h as seen in the diagram.

(
∏
F)n

h

��

{x1,...,xn} // ∏F

πF

��
F

∏
Fn

πF n
//

g

==|||||||||||||||||||
Fn.

{x1,...,xn}F

OO

(3.17)

Now stand back and replace the functions which remain relevant and we see our
final diagram visually illustrates our effort is correct.

(
∏
F)n

πn
F

!!C
CC

CC
CC

CC
CC

CC
CC

CC
CC

{x1,...,xn} // ∏F

πF

��
F

Fn.

{x1,...,xn}F

OO

(3.18)

That is to say, πF ◦ {x1, . . . , xn} = {x1, . . . , xn}F ◦ πn
F .

Definition 3.2.11. Fix a variety V with signature σ. The direct product of a
family F of members of V is the Cartesian product

∏
F equipped with operation

of each type in σ according to the construction in Theorem-3.2.10.

3.9 Let F be a family of {·, 1}-algebras. Show that F ⊆ V(x · 1 = x = 1 · x)
then

∏
F ∈ V(x · 1 = x = 1 · x). In particular, give the identity of

∏
F .

3.10 True or False? If F is a family of {·, 1}-algebras where at least one member
does not have an identity, is it possible for

∏
F to have an identity? Prove your

claim.

Lemma 3.2.12. If F is a family of σ-algebras then for every F ∈ F , the
projection function πF :

∏
F → F is a σ-homomorphism.

3.11 Prove Lemma-3.2.12 in the case where σ has one n-ary operation.
(Generalizing to arbitrary signature follows by induction – you do not need to
prove that.)

Theorem 3.2.13 (Universal Mapping Property for Direct Products). If F is a
family of σ-algebra, T is a σ-algebra, and {fF : T → F : F ∈ F} is a family of
σ-homomorphisms then there is a unique σ-homomorphism f : T →

∏
F such

that

(∀F ∈ F ,∀t ∈ T ), πF (f(t)) = fF (t).

As a diagram of functions this means:∏
F πF // F.

T

f
]eCCCCCCC

CCCCCCC fF

??��������

(We use the double-bar function to indicate that homomorphism is unique with
respect to all others in the diagram.) The homomorphism f is often denoted∏

F∈F fF .



3.2. DIRECT PRODUCTS Algebra – James Wilson 69

Proof. First we know that every σ-homomorphism is a function. Therefore, the
Universal Mapping Property of Cartesian Products provides a unique function
f : T →

∏
F such that for each F ∈ F , πF ◦ f = fF . We must show f is a

homomorphism. We leave this as an exercise.

3.12 Show that the f in Theorem-3.2.13 is a homomorphism.
We close by noticing that varieties are closed to direct products. This means

that we have an alternative method to construct examples of members in a
variety.

Theorem 3.2.14. Fix a variety V of σ-algebras. If F ⊂ V then
∏
F ∈ V.

3.13 Show directly that if G and H are monoids then G×H is a monoid.

3.14 Prove that if a variety has one member of size greater than 1 then
the variety is infinite, i.e. the variety has an infinite number of members. [Hint:
consider direct products.]

3.15 True or False? We say a group G is finite if the size of the set G is finite.
Is the class of finite groups a variety?

For the next exercise we need to settle some standard notation. When we
talk about abelian groups we typically write use the signature {+,−, 0} so that
we are aware the addition is commutative. The direct product of abelian groups
A and B is therefore denoted as A ⊕ B and for a general family A of abelian
groups by

⊕
A =

⊕
A∈A A.

3.16 True or False? An abelian group A is said to be a torsion group if for every

element a ∈ A, there is a positive integer n such that na =
n︷ ︸︸ ︷

a + · · ·+ a = 0.
Does the class of all torsion abelian groups make a variety? [Hint: consider
(Z/2Z) ⊕ (Z/3Z) ⊕ (Z/5Z) ⊕ · · · ⊕ (Z/pZ) ⊕ · · · ) where p runs through every
prime.]

Recall in Section 1.6.2 that we introduced fields as commutative rings in
which every nonzero element has an inverse. For example, Q, R, and C are
fields but Z is not a field. We also remarked that the definition of a field failed
to specify a variety because in a variety every element of the algebra must satisfy
every law. However, with fields we do not require (and indeed cannot require)
that the zero have an inverse. So this suggests that perhaps the class of all
fields does not make a variety. Yet, we could not prove that at the time. Now
we can. We have just proved that varieties are closed to direct products. So if
we suppose that the class of fields is a variety then the direct product Q ⊕ Q
must be a fields, because Q is a field. However, that is not the case because
(1, 0) ∈ Q⊕Q has no inverse. Therefore the class of fields is not closed to direct
products and so the class of fields is not a variety.
3.17 Prove that in Q⊕Q, (1, 0) has no inverse.
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In Chapter ?? we saw the power of relating equivalence, partitions, and sur-
jections and then extended this interplay to algebra using congruence, quotients,
and epimorphisms. It probably did not escape notice that many functions are
not surjective so a suspicion may have arrisen asking for the roles other functions,
such as one-to-one (injective) functions. This chapter will explore a parallel re-
lationship involving injective functions. However, we caution the reader not to
expect a parallel development to that in Chapter ??. For example, we will not
develop any sort of “co-equivalence relation”. Though there are connections
which we explore later, the concepts of this chapter are somewhat unrelated to
the reasoning in the previous chapter.

4.1 Injectivity, subsets, and lattices

Once again, we begin with the implications from Set Theory and gradually
adapt these to algebra. Recall that a relation from A to B is simply a subset
R ⊆ A × B. For every relation we can consider its dual R−1 ⊆ B × A defined
by

R−1 = {(b, a) : (a, b) ∈ R}.

For example, if R =
{

(x, y) : x2 + y2

4 = 1
}
⊆ R × R then the graph of our

relation R is an ellipse with x-radius 1 and y-radius 2. So R−1 is an ellipse with
x-radius 2 and y-radius 1 (because we simply swap the coordinates of every
point in R). The notation R−1 is suggestive of inverse but for now we should
treat it just as notation.

Now suppose we consider functions. There are two properties that establish
a relation R ⊆ A × B as a function f : A → B, where f(a) = b if, and only if,
(a, b) ∈ R.

(i) For every a ∈ A there is a b ∈ B such that (a, b) ∈ R. In functional
vernacular we say A is the domain of f and B is the codomain.

(ii) For every a ∈ A, if b, b′ ∈ B such that (a, b), (a, b′) ∈ R then b = b′. Again
in functional speak we say that f is well-defined.

If we think visually, property (i) says that the graph of f has no ‘holes’, no
‘asymptotes’, i.e. no place in A which is not given a point on the graph. Property
(ii) is often described as the “vertical line test”, i.e. that for every input a ∈ A,
there is only one output.

Now, if R ⊆ A × B establishes a function f : A → B as above, we can
temporarily forget that R is a function and just consider its dual R−1. What
we often find is that Rop does not determine a function f−1 : B → A. As with
R−1, f−1 anticipates that we eventually wish to relate f to an inverse function.
However, as there are two conditions a function must satisfy, there are also two
ways in which R−1, and therefore f−1, can fail to be a function.

If R−1 fails property (i) then we are saying that for some b ∈ B there is no
a ∈ A such that (b, a) ∈ R−1, and so for all a ∈ A, (a, b) /∈ R. This is simply
saying that our function f : A → B is not surjective: there is a b ∈ B with no
a ∈ A such that f(a) = b.

On the other-hand, if R−1 fails property (ii) then we notice that for some
value b ∈ B there exist a, a′ ∈ A such that a 6= a′ yet (a, b) and (a′, b) both lie
in R. Translating this to the f notation we are saying that form some a, a′ ∈ A,
f(a) = f(a′) yet a 6= a′. This suggests that we invent a description of functions
that avoid that problem. In fact this is the well-known property of ‘one-to-one’
functions.
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Definition 4.1.1. A partial function f : A → B is injective if

(∀a, a;∈ A) f(a) = f(a′) ⇒ a = a′.

We also say that f is one-to-one or an injection.

Theorem 4.1.2. (i) If f : A → B is an injective function then f−1 : B → A
is a partial function.

(ii) If f : A → B is a surjective function, then f−1 : B → A has domain A.

(iii) If f : A → B is bijective then f−1 is a function.

4.1 Prove Theorem-4.1.2.

4.2 Group Lattices

Proposition 4.2.1. If H is a subgroup of G if and only if the relation a ≡H b
defined as ab−1 ∈ H is a right congruence relation.

Theorem 4.2.2 (Lagrange). Given a G and a subgroup H ≤ G then |G| = [G :
H]|H|.

Proof. The main idea is that H partitions G into cosets. Cosets are all in one-
to-one correspondance with H. The principle reason for the bijections is the
existance of inverses.

From Proposition-4.2.1 we know H partitions G into equivalence classes.
Indeed, a ≡H b implies ab−1 ∈ H so for all h ∈ H, a ≡H ha as aa−1h ∈ H.
Consequently [a] = Ha. Therefore G is partitioned into cosets Ha1, . . . ,Han

where by definition n = [G : H].
Now given any a, b ∈ G, fa,b : Ha → Hb via f(g) = ga−1b. Clearly the map

is well-defined.

fb,a(fa,b(g)) = fb,a(ga−1b) = ga−1bb−1a = g = 1(g).

Therefore fa,b is invertible and so also a bijection. Therefore |Ha| = |Hb|.
G is the disjoint union of [G : H] many cosets each of size |H|, so |G| = [G :

H]|H|.

Corollary 4.2.3 (Tower Law). Given K ≤ H ≤ G we have

[G : K] = [G : H][H : K]

Theorem 4.2.4 (Parallelogram Law). Given H,K ≤ G, recall HK is the
complex. Opposite sides of the parallelogram are congruent.

1

H ∩K

H

K

HK

G

??? ��
��

��
��

That is:
[HK : H] = [K : H ∩K].

In particular
[G : H] ≥ [K : H ∩K].
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Proof. The essential idea is that f : K/H∩K → HK/K, given by f(gH∩K) =
gH, is a bijection.

Given gH∩K = kH∩K we have k−1gH∩K = H∩K so in fact k−1g ∈ H∩K.
Consequently,

f(k−1gH ∩K) = k−1gH.

Lemma 4.2.5. H,K ≤ G, then HK/K and KH/K are naturally equivalent
as left or right cosets.

4.3 Lattices of Subgroups

Definition 4.3.1. Normal A subgroup H is normal in G if for every α ∈
Inn(G) α(H) ≤ H. [As α is invertible we prove α(H) = H.]

Characteristic A subgroup H is characteristic in G if for every α ∈ Aut(G),
α(H) ≤ H. [As α is invertible we prove α(H) = H.]

S-Invariant A subgroup H is S-invariant in G if for every α ∈ S ≤ End(G),
α(H) ≤ H.

Fully Invariant A subgroup H is fully invariant in G if for every α ∈ End(G),
α(H) ≤ H.

Theorem 4.3.2. All S-invariant subgroups of G from a complete lattice.

Proof. Let {Hi | i ∈ I} be a family of subgroups of a group G. Then we define
the intersection to be setwise intersection. Likewise, we take the join to be the
intersection of all subgroups which contain every subgroup in the family.

Given a family {Hi | i ∈ I} of characteristic subgroups, if we let α ∈ S and
x ∈

⋂
i∈I Hi then we find α(x) ∈ Hi for all i since each Hi is characteristic.

Indeed then we have α(x) ∈
⋂

i∈I Hi proving
⋂

i∈I Hi is characteristic in G.
Also given any that the characteristic subgroups are normal, the join is the

product; therefore, every element is of the form xi1 · · ·xij where xik
∈ Hik

and
consequently

α(xi1 · · ·xij ) ∈ Hi1 · · ·Hij ≤ Πi∈IHi.

Therefore, Πi∈IHi is characteristic.

Proposition 4.3.3. Given any group G, End(G) acts on the subgroup lattice
of G and is order preserving. In particular Aut(G) acts as a group on G.

Proof. For any H ≤ G, 1(H) = H. Likewise taking any α, β ∈ End(G) we find
α(β(H)) = αβ(H).

In general, the action need not be faithful, and it is transitive only when
G = 1 – by the order preservation.

The characteristic subgroups are the fixed points of the action of Aut(G) on
L(G).

By the Sylow theorems we know that all Sylow subgroups are conjugate.
In particular, Aut(G) acts transitively on the Sylow-p-subgroups but the only
necessary members are in Inn(G). So if Aut(G) 6= Inn(G) then Aut(G) contains
a non-trivial kernel.
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4.4 Group Actions

Definition 4.4.1. Given a group G and a set X, a group action is a map
a : X ×G → X where

1. a(x, 1) = x for all x ∈ X

2. a(a(x, g), h) = a(x, gh) for all x ∈ X and g, h ∈ G.

We express the action as
a(g, x) = xg.

The set X is called a G-set. The following sets all are natural consequences: let
x ∈ X and g ∈ G,

Orbits xG = Gx = {y ∈ X | xg = y, for some g ∈ G},

Fixed Points Fix(g) = Xg = {x ∈ X | xg = x},

Fixed Points Fix(G) = XG = {x ∈ X | xg = x, for all g ∈ G},

Index [X : G] the number of orbits in G.

Stabilizer StabG(x) = Gx = {g ∈ G | xg = x},

Kernel ker a = {g ∈ G | xg = x, for all x ∈ X}.

Proposition 4.4.2. The oribits partition X. Stablizers are all subgroups of G
and the kernel is the intersection of the stabilizers; moreover, the kernel is a
normal subgroup. Finally

[G : StabG(x)] = |xG|.

Proposition 4.4.3 (Cayley). The category of all group actions on a set X
is isomorphic to the category of homomorphisms into Sym(X). In particular,
given a group action 〈G, X, a〉, Γa : G → Sym(X) is given by

Γa(g)(x) = xg.

Also, ker Γa = ker a.

Definition 4.4.4. A group action is called:

Faithful if ker a = 1,

Free if Fix(G) = ∅,

Transitive if xG = X for any x ∈ X,

Regular if StabG(x) = 1 for all x ∈ X. In particular all regular actions are faithful,
free, and transitive,

Primitive if it is transitive and StabG(x) is a maximal subgroup of G for any x ∈ X.

Nearly without exception, every group action should be considered as faith-
ful. This is because every group action 〈G, X, a〉 can be replaced by 〈G/Ker a, X, a〉
with no substintive change to the theory and results.

Free actions are typically of interest to topologist. Group thoery makes use
of actions of groups on themselves and each other, and consequently elements
that are central or identity tend to be fixed points and so free actions are not
that important. Finally, the fact that primitivity is well-defined despite the
choice of x is due to that following result.
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Proposition 4.4.5. Given g ∈ G and x ∈ X

g−1 StabG(x)g = StabG(xg)

in particular, if G acts transitively, then all stabilizers are conjugate and indeed
isomorphic.

Proof. Given any h ∈ StabG(x) it follows xh = x and so

(xg)g−1hg = xhg = xg.

Hence g−1hg ∈ StabG(xg).

Proposition 4.4.6 (Class Equation). Given a finite group G and a finite set
G-set X, then

|X| = |Fix(G)|+
∑
x∈T

[G : StabG(x)]

where T is a transversal of all orbits which are not singletons.

Corollary 4.4.7. Given any finite group G,

|G| = |Z(G)|+
∑
g∈T

[G : CG(g)].

Lemma 4.4.8 (not-Burnside’s Lemma). Given a finite group G and a finite
G-set X, it follows

[X : G] =
1
|G|

∑
g∈G

|Fix(g)|

Definition 4.4.9. Given a fixed group G and two G-sets Γ and Ω we define a
G-map f : Γ → Ω as any function of sets where f(γg) = f(γ)g for all γ ∈ Γ and
g ∈ G.

We say two G-sets Γ and Ω are G-isomorphic, and write Γ 'G Ω, if there is
a pair of G-maps f : Γ → Ω and g : Ω → Γ such that fg = 1Ω and gf = 1Γ.

It is clear that composition of G-maps is again a G-map so we can consider
the category of all (right) G-sets, denoted SetG with G-maps as morphisms.1

Proposition 4.4.10 (Cayley). Let G denote the category of all groups. The
following categories are all naturally isomorphic:

(i) SetG

(ii) GSet

(iii) PermGroups – the full subcategory (of G) of all permutation groups.

We also have a version of the isomorphism theorems which is as transparent
as for groups.

Lemma 4.4.11. A bijective G-map is a G-isomorphism.

Proof. Given a G-map f : Ω → Γ which is bijective, then

ωg = f(f−1(ω))g = f(f−1(ω)g);

hence,
f−1(ωg) = f−1(f(f−1(ω)g)) = f−1(ω)g.

Thus f−1 is a G-map so f is a G-isomorphism.
1Left acting G-sets would be denoted GSet. If G is abelian then every G-set is both left

and right in the natural way.
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Proposition 4.4.12. Given a transitive G-set Ω, then there is a canonical G-
isomorphism R : Ω → G/ StabG(ω) for any ω ∈ G. Moreover, given any g ∈ G
we find

StabG(ωg) = g−1 StabG(ω)g = StabG(ω)g

and
G/ StabG(ω) 'G Ω 'G G/ StabG(ωg).

Proof. Define R : Ω → G/ StabG(ω) as R(ωg) = StabG(ω)g.
Since G acts transitively on Ω then for every γ ∈ Ω there exists a g ∈ G

such that γ = ωg. Moreover, given two such g, g′ ∈ G where ωg = ωg′ it follows
ω = ωg′g−1

so that g′g−1 ∈ StabG(ω). Since StabG(ω) is a subgroup it follows
g ≡ g′ (mod StabG(ω)) proving R is well-defined.

Next StabG(ω)g = StabG(ω)g′ if and only if g ≡ g′ (mod StabG(ω)) so that
ωg = ωg′ proving R is injective. Finally, given any StabG(ω)g clearly ωg ∈ Ω so
that R is surjective.

Given g, g′ ∈ G,

R((ωg)g′) = R(ωgg′) = StabG(ω)gg′ = R(ωg)g′.

Therefore R is a bijective G-maps so it is a G-isomorphism.
Given any g ∈ G and h ∈ StabG(ω) then

(ωg)hg

= (ωg)g−1hg = (ωh)g = ωg.

Thus hg ∈ StabG(ωg) so that StabG(ω)g ≤ StabG(ωg). By the symmetric
argument StabG(ω)g = StabG(ωg).

Finally, given a that ωG = Ω = (ωg)G it follows Rω and Rωg are both
G-isomorphisms so that

G/ StabG(ω) 'G Ω 'G G/ StabG(ωg).

Proposition 4.4.13. Given H,K ≤ G then KH, KH/K, and H/H ∩K are
natural H-sets and furthermore,

KH/K 'H H/H ∩K.

[Assuming action on the right. For an action on the left: HK/K 'H H/H∩K.]

Proof. Given any kh ∈ KH and h′ ∈ H define khh′ = khh′. Clearly then
khh′ ∈ KH as hh′ ∈ H. The axioms for the action follow equally painless:
kh1 = kh1 = kh, (kha)b = khab = khab. We see the argument is identical when
we consider KH/K and the action Khh′ = Khh′. Finally, H∩Khh′ = H∩Khh′

completes the listing of the natural actions.
For the isomorphism, it suffices to build a bijective G-map. Define f :

H/H ∩ K → KH/K by H ∩ Kh → Kh. To see that f is well-defined take
h ≡ h′ (mod H ∩K), that is, h−1h′ ∈ H ∩K so that h−1h′ ∈ K proving h ≡ h′

(mod K). Since h, h′ ∈ H it follows h−1h′ ∈ H so the steps are reversable
proving also that f is injective. Finally it is clear the f is surjective so we need
only prove that f is an H-map. Given again any h, h′ ∈ H we have

f(H ∩Khh′) = Khh′ = f(H ∩Kh)h′.

Definition 4.4.14. Given a G-set Ω we define the G-topology of Ω as the
topology generated by the orbits of Ω under the action of G.
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Proposition 4.4.15. Every G-map is G-continuous.

Proof. Orbits partition Ω so pre-images of basic open sets are open sets.

Proposition 4.4.16. A G-set is transitive G-set if and only if it is connected.

4.5 Faithful Actions

An action of G on a set Ω is equivalent to asking for a homomorphism ϕ :
G”− > ”Sym(Ω). The kernel of this homomorphism is the kernel of the action.
An action is faithful when the kernel is trivial. We also speak of a permutation
representation for G when given such a homomorphism.

By Cayley’s theorem we know every group has a transitive faithful permuta-
tion representation, namely, the regular representation. However this is on a set
equal the size of the group which may be too large for meaningful computations.

Not all groups can be faithfully represented on small sets.

Proposition 4.5.1. The kernel of an action is the intersection of the stabilizers
of the action. When the action is transitive this is equivalent to the core of any
stabilizer.

Recall that a p-group G is extraspecial if Z(G) = G′ = Φ(G) ∼= Cp.
Example: An extraspecial p-group G of order p2m+1 has no transitive faithful
permutation representation of degree less than 2m+1. �

Proof. Let H be a subgroup of G of index [G : H] ≤ 2m which we wish to have
as a stabilizer of a transitive action. If H is normal in G then it cannot be a
stabilizer of a faithful transitive action (it is its own kernel.) As such we assume
that H is not normal in G and the core of H is trivial.

As G/G′ is abelian, any subgroup H of G where G′ ≤ H ≤ G, is immediately
normal in G (H/G′ is normal in G/G′.) Thus H ′ = H ∩G′ = 1 so H is abelian.
Likewise Gp ≤ Φ(G) in any p-group so Hp ≤ Φ(G). But Φ(G) is a minimal
subgroup so Hp = 1 or Φ(G). As Φ(G) = G′ we know Hp = 1. Therefore H is
elementary abelian.

Now we use geometry to complete the proof. First we notice that HZ/Z is
a totally isotropic/totally singular subspace as H ∩ Z = 1. (For any a, b ∈ H,
[a, b] = 1 or ϕ(a) = a2 = 1 in the p = 2 case.) Thus HZ/Z is contained
in a maximal totally isotropic/singular subspace. However maximal totally
istropic/singular subspace have dimension m. Thus HZ/Z is too large to be
contained in such a subspace.

Hence H must be normal and contain Z. Hence every large stablizer has a
kernel.

Given that there are not transitive faithful embeddings of an extraspecial
group we consider intransitive actions.

Corollary 4.5.2. There is no faithful permutation representation of an ex-
traspecial group of degree less than pm.

Proof. We saw that every large stabilizer contains the center of G. Thus the
intersection of all the stabilizers of an intransitive action of small degree still
contains the center and thus is not faithful.

Given a faithful transitive group action of G on Ω, that is, G is embedded
in Sym(Ω), we attach the subgroup structure of G on Ω and visa-versa. In
particular we make connections between the lattice of all subsets of Ω and the
lattice of all subgroups of G. We begin with a comprehensive example.
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4.6 The Action of S4 on 4 Elements

Let Ω = {1, 2, 3, 4} and G = Sym(Ω) = S4. The thirty subgroups of S4 are
too many to render in a two dimensional lattice with any decernible properties.
However three dimensional models reveal a surprising amount of symmetry as
may be expected as the group is the group of symmetries of a cube (in this case
the action is in S8.)

In general when studying a group action the first subgroup to locate is the
kernel. Since S4 acts faithfully we may skip to the stablizer of a point.

Fixing any point in Ω means we are free to permute any of the remaining 3,
so we expect to find StabS4(1) ∼= S3, as it is. Independently we can study the
subgroup structure of S3.

S3

A3

〈(12)〉 〈(13)〉 〈(23)〉

1

��
��

//
//

//
//

//
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??
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//
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Now we may ask: what is the relationship with the subgroups of StabS4(1)
and subsets of Ω?

4.6.1 Fixing Subgroups

Definition 4.6.1. Given a permutation group G in Sym(Ω), and any subset
∆ of Ω, we let FixG(Ω)

4.6.2 Restricted Actions

Given a subgroup H ≤ G and G acting on Ω we can restrict the action to
H. The restricted action can be useful to decompose G, say for instance by a
Frattini argument. Additionally, normal subgroups provide nice consequences
which are obvious when once we prove the following set of theorems.

Lemma 4.6.2.

Theorem 4.6.3.

4.7 Primitive Group Actions

Given a group action of G on a set Ω, we may immediately assume the action
is transitive on the orbits. To this end we take all actions on Ω to be transitive
unless specified otherwise. A further divide-and-conquer process is to decompose
Ω into blocks where the action of G is split into the internal action inside each
block and the external action which permutes the blocks.

Definition 4.7.1. Given a group action of G on Ω, a block system for G is
any partition B of Ω, whose elements we call blocks, and where given any block
B ∈ B, Bg ∈ B.

A block system is called cyclic if there exists a block B such that B =
{Bg | g ∈ G}.
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Because of the existence of inverses, it is clear that in a cyclic block system,
all blocks are generators.
Example: The block system for the natural action of D24 on the 12 vertices of
the dodecagon can be seen in the inscribed geometry.
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This gives us the following block systems:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 3, 5, 7, 9, 11|2, 4, 6, 8, 10, 12,

1, 4, 7, 10|2, 5, 8, 11|3, 6, 9, 12, 1, 5, 9|2, 6, 10|3, 7, 11|4, 8, 12,

1, 7|2, 8|3, 9|4, 10|5, 11|6, 12, 1|2|3|4|5|6|7|8|9|10|11|12.

�

Proposition 4.7.2. A group action is transitive if and only if every block system
is cyclic.

Proof. Let G act on Ω.

Let B be a block system of a group action of G on Ω. Given any blocks B
and C in B, take b ∈ B and c ∈ C. Since G acts transitively on Ω, there exists
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a g ∈ G such that bg = c; hence, Bg ∩ C 6= ∅. However B is a partition so we
conclude Bg = C.

For the converse, take the trivial partition of

B = {{ω} | ω ∈ Ω}.

Given any two elements ω1, ω2 ∈ Ω, we may take {ω1} to generate B so that
there exists a g ∈ G where ωg

1 = ω2. Hence the action is trivial.

Remark 4.7.3. Most authors refer to block systems only on transitive group
actions. In such cases, block systems are precisely cyclic block systems, and
thus the term block system is used without additional qualifiers.

Once we restrict our attention to transitive gorup actions we find the cyclic
nature allows us to return to the group for structure. In particular, we now re-
place block systems with the any generating block. In order to extract compar-
isons of block systems we choose generating blocks which each have an element
in common.

Proposition 4.7.4. Given a transitive group action of G on Ω, and ω ∈ Ω,
then any subset B ⊂ Ω containing ω is a block if and only if Bg∩B 6= ∅ implies
Bg = B. Such a block we call and ω-block, and the block system they induce is
an ω-block system, denoted BG.

Proof. Since G acts transitively, Ω is the union of Bg for all g ∈ G. Moreover, the
sets Bg are pairwise disjoint by assumption so this is indeed a block system.

Definition 4.7.5. Given two ω-block A and B, we say AG ≤ BG if and only if
A ⊆ B. We also set AG∧BG = (A∩B)G and define AG∨BG as the intersection
of all ω-block systems CG where A ∪B ⊆ C.

Proposition 4.7.6. The ordering on ω-blocks forms a complete lattice. In
fact, the lattice is isomoprhic to the quotient lattice of G/ StabG(ω). We call
the lattice, the ω-block lattice, or simply the block lattice.

Proof. We use the natural G-isomorphism f : Ω → G/ StabG(ω) of coset action:
f(ωg) = StabG(ω)g.

Definition 4.7.7. A transitive group action is primitive if it has exactly two
block systems – namely the two trivial partitions.

Notice that this definition avoids allowing the trivial action to be considered
as primitive.

Corollary 4.7.8. Given a transitive group action of G on Ω, all the following
are equivalent:

(i) The action is primitive.

(ii) The block lattice is simple.

(iii) For some ω ∈ Ω, StabG(ω) is maximal in G.

(iv) For all ω ∈ Ω, StabG(ω) is maximal in G.

Proof. A lattice is simple if it has exactly two elements, thus every primitive
action produces a simple block lattice. Since the block lattice is order isomor-
phic to the quotient lattice of subgroup of G/ StabG(ω), it follows StabG(ω) is
maximal in G. Since the choice of ω is arbitrary it is true for all ω.
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Example: Claim: The block lattice of the natural action of D2n on n elements
is isomorphic to the subgroup lattice of Cn.

The proof involves induction to show every stabilizer of D2n has quotient
lattice isomorphic to Cn. For now an example will suffice with D24.

Originally we would be tempted to write:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

1, 3, 5, 7, 9, 11|2, 4, 6, 8, 10, 12

1, 4, 7, 10|2, 5, 8, 11|3, 6, 9, 121, 5, 9|2, 6, 10|3, 7, 11|4, 8, 12

1, 7|3, 9|5, 11|2, 8|4, 10|6, 12

1|2|3|4|5|6|7|8|9|10|11|12
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Now using the idea of ω-blocks, we let ω = 1 and write only the block which
contains ω so we get the simpler listing:

1, . . . , 12

1, 3, 5, 7, 9, 11

1, 4, 7, 101, 5, 9

1, 7

1
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We notice this corresponds to the subgroups of D24 as claimed by the theorem:

D24

D1
12

D1
8D1

6

D1
4

D1
2
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Notice that geometrically the ω-blocks are all blocks that share a point. We can
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illustrate this now as:
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Proposition 4.7.9. If StabG(ω) ≤ N E G then StabG(ωg) ≤ N for all g ∈ G.

Proof. Since N is normal it is closed to conjugation; thus,

StabG(ωg) = StabG(ω)g ≤ N.

Definition 4.7.10. A block system is a normal block system if it corresponding
subgroup in G is normal in G.

The question is whether invariants of group action can detect normality
of subgroups. It is known that the block systems of a group action can be
determined in polynomial time. Since the degree of a group action is typically
logrithmically less than the order of the group, computations that make use of
the set structure can be advantageous.

4.8 Classification of Primitive Actions: O’Nan-
Scott

Recall that with an abstract action we can consider the action restricted to any
subgroup. Suppose that the subgroup is normal, what then might we conclude
about the orbits induced?

Lemma 4.8.1. Given a G-set Ω and a subgroup H of G, then for all ω ∈ Ω,
(i) StabG(ω) ∩H = StabH(ω).

Moreover, if H is normal in G then
(ii) StabH(ω) ∼= StabH(ωg)
(iii) H/ StabH(ω) 'H H/ StabH(ωg)

for all g ∈ G.

Remark 4.8.2. In light of Proposition-4.4.12, part (iii) may seem unnecessary.
However, recall that g is any element of G, not necessarily H, so these two
stablizers are not only isomorphic, (ii), but despite not being conjugate, they
still represent the same action. For this reason restricting actions to normal
subgroups can retain the focus on one stablizer and ignore all others.

Proof. Since H is contained in G which ever points stabilize ω in H do also in
G so StabG(ω) ∩H = StabH(ω).
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Now suppose H is normal in G. Then given any g ∈ G it follows

StabH(ωg) = StabG(ωg) ∩H = (StabG(ω) ∩H)g = StabH(ω)g.

Consequently StabH(ωg) ≤ H for all g and conjugate to StabH(ω) in G (possibly
not in H as g may not lie in H) and consequently the two are isomorphic.

Finally, we know by the thrid isomorphism theorem that the action of
N/ StabN (ω) 'N N StabG(ω)/ StabG(ω). [For simplicity in the diagram take
StabK(γ) = Kγ .]

NGω NGωg

Gω Gωg

N

Nω Nωg
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In G all the following are conjugate via g: (NGω)g = NGωg , (Gω)g = Gωg , and
(Nω)g = Nωg . Consequently,

N/Nω 'N NGω/Gω 'N NGωg/Gωg 'N N/Nωg .

Proposition 4.8.3. Take a transitive G-set Ω and a subgroup H of G. If there
exists an ω ∈ Ω where StabG(ω) ≤ H ≤ G then the orbits of Ω treated as an
H-set are blocks of Ω as a G-set.

Proof. First identify the action of G on Ω to G on G/ StabG(ω).
Suppose StabG(ω) ≤ H ≤ G for some ω ∈ Ω. Since StabH(ω) = H ∩

StabG(ω) = StabG(ω). Thus the orbits under H are (H/ StabH(ω))g = (H/ StabG(ω))g,
g ∈ G. Clearly this partitions G/ StabG(ω) and (H/ StabG(ω))g∩H/ StabG(ω) 6=
∅ implies for some h, k ∈ H,

StabG(ω)hg = StabG(ω)k

so hgk−1 ∈ StabG(ω) ≤ H. Since h, k ∈ H and hgk−1 ∈ H it follows g ∈ H.
Thus the orbits are equivalent. Therefore the orbits of H are blocks for G.

Corollary 4.8.4. Given N E G and a G-set Ω, then the restriction to Ω as an
N -set is a block system for the action by G.

Proof. It is a simple matter of the third isomorphism theorem that illustrates
our claim:

G

NGω

N

Gω

Nω

tttttt
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77
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7

77
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77
77

77
7

tttttt
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Since StabG(ω) ≤ N StabG(ω) ≤ G and

N/ StabN (ω) 'N N StabG(ω)/ StabG(ω)

we conclude that orbits of N are blocks for G.

Corollary 4.8.5. Given a primitive group G and a proper normal subgroup N
of G, then G = NGω and N is transitive. Furthermore, if N is regular then
G = N o Gω.

Proof. Since G is primitive there are no proper subgroups between Gω and G.
Since Gω ≤ NGω ≤ G it follows NGω = G or Gω. However the action is
faithful, and N proper, so N 6= Gω; thus, G = NGω. Moreover,

[G : Gω] = [NGω : Gω] = [N : N ∩Gω] = [N : Nω]

so N is transitive. Finally, if N is regular, that is Nω = 1, then N ∩Gω = 1 so
that G = N o Gω.

Example: It is not in general true that a proper normal subgroup of a primi-
tive group is primitive. For instance, the action of S4 on four points has point
stablizer S3 and there are no intermediate subgroups between S3 and S4. How-
ever, we may take V – the Veer Klein group which is normal in S4. Since V is
regular it is indeed the case that S4

∼= V o S3. Yet even in this case it is clear
that V is not primitive as it has three intermediate subgroups and the point
stablizer is trivial (refer to Proposition-4.8.3.)

Notice what this says about the weakness of Proposition-4.4.13. We have
S4/S3 'V V but as a V -set, S4/S3 is not primitive while S4/S3 as an S4-set is
primitive.

S4
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V

‘Z1
2 ‘Z2

2 ‘Z3
2

1

44
44

44
44

44
44

44
44

44

44
44

44
44

44
44

44
44

44

??
??

OOOOOOOOO

��
��

�

oooooooooo

�

The situation where a block exists under a isomorphic restricted action but
not under the full action is a case of what I will call a phantom block. Given a
primitive group G of degree n and a nilpotent normal subgroup N , then there
is a phantom block for every order dividing that of n.

Recursive computations on permutation groups often restrict to the case
when the group is primitive. At this point the algorithms become specified to
the various flavors of the O’Nan-Scott theorem and as a consequence may at
times even rely on the classification of finite simple groups. If phantom blocks
can be identified and admitted to certain recursion formulas perhaps some of
the approaches can be improved.
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4.8.1 Scoles of Primitive Groups

The socle of a group is the subgroup generated by all the minimal normal
subgroups. In particular it itself is normal. Since minimal normal subgroups are
characteristically simple, they are each isomorphic to a product of isomorphic
simple groups. Hence the scole itself is a product of simple groups. In the case
of primitive groups much more can be said.

Lemma 4.8.6. Given two minimal normal subgroups M and N , then

4.9 Wreath and Twisted Wreath Products

When given an intransitive permutation group, we can represent the group in
a lower degree as a transitive action – although not always faithfully. When we
build groups through cartessian products the natural action is simply a product
action – which is never transitive. For this reason a new generic extension is
devised whose design enables natural transitive actions. The approach is known
as a Wreath Product.

Definition 4.9.1. Let H ≤ Sym(Γ) and K ≤ Sym(∆). Then we define the
wreath product of H with K denoted H oK by K nθ H∆ with

θ : K”− > ” Aut H∆

given in the natural way as
δfk = (δk)f

where δ ∈ Γ, f ∈ H∆ and k ∈ K.

We can equipe H o K with two actions. The simplest action is the block
action where H oK ≤ Sym(Γ×∆) and

(γ, δ)(h,f) = (γfh, δh).

This action is transitive if H and K are transitive. Furthermore, it is imprimitive
as there are proper block systems – the fibers Γδ = {(γ, δ) : γ ∈ Γ} for each
δ ∈ ∆.

We can also describe the wreath product as an action on cosets. This allows
us to interpret the twisted wreath product analogously.

Definition 4.9.2. Let H and K be groups, and K ′ ≤ K. Then we define the
wreath product H oK′ K as K nθ HK/K′

by defining

HK/K′
= {f : K → H : (kk′)f = kf, k ∈ K, k′ ∈ K ′},

and equipe HK/K′
with pointwise multiplication, and setting θ : K → AutHK/K′

to be the action
jfk = (jk)f

for j, k ∈ K and f ∈ HK/K′
.

Given any transversal T of K ′ in K then there is a natural group isomorphism
τ : HK/K′ → HT where as usual HT is the set of all functions from T to H,
defined as restriction: f 7→ f |T . Inparticular, we are asking for all maps that
are identity on the cosets kK ′ in K/K ′.

These two formulations are equivalent whenever K from before is transitive
on ∆, as then the action can be exhibited as an action on cosets.

We are now able to generalize the wreath product to the twisted wreath
product:
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Definition 4.9.3. Let H and K be groups, and K ′ ≤ K together with a map
ϕ : K ′ → AutH. Then we define the twisted wreath product H oϕ,K′ K as
K nθ HK/K′

by defining

HK/K′

ϕ = {f : K → H : (kk′)f = (kf)k′ϕ, k ∈ K, k′ ∈ K ′},

and equipe H
K/K′

ϕ with pointwise multiplication, and setting θ : K → AutH
K/K′

ϕ

to be the action
jfk = (jk)f

for j, k ∈ K and f ∈ H
K/K′

ϕ .

Notice that a twisted wreath product is a usual wreath product whenever
ϕ is the trivial map. So here the H

K/K′

ϕ still is isomorphic to HT through
restriction, however, the distinction is that the maps are invariant on cosets not
identity as before.

Remark 4.9.4. To save on notation we adopt the following common requirement.
Whenever we consider the wreath product on cosets of a point stablizer of a
permutation group, we suppress the subgroup in the notation.

Example: Express D8 as the group generated by 〈(1234), (13)〉 and take α =
(1234) and β = (13) so that AutD8

∼= D8 is explicitly

〈(β, αβ, α2β, α3β)(α, α3), (β, α2β)(α, α3)〉.

Consider D8 oD8 verses D8 oϕ D8 where ϕ : (D8)1 → AutD8
∼= D8 by

(24) 7→ (b, a2b)(ab, a3b),

where a = (1, 2, 3, 4) and b = (1, 3). �

4.10 Group Actions through Cayley Diagrams

Given a group faithful G and a G-set Ω we can define a graph for the action in
a natural way. The vertex set is simply Ω. The edges are directed and labeled
by G so that ω1, ω2 ∈ Ω, have an edge from ω1 to ω2 labeled by g ∈ G exactly
when ωg

1 = ω2.
It is clear that the connected components of the graph are the orbits of the

action. Typically this graph is far too large for practical use. Indeed, a spanning
forest is all that is required. If we fix an ω ∈ Ω and consider its orbit under G
we can see that a spanning tree for this component of the graph corresponds
precisely to a choice of transversal for Gω in G. Indeed, for any g ∈ G, the
edges from ω to ωg for any g are labeled by Gωg. In particular this implies that
each orbit is a |G|-complete directed graph.

To reduce to a simple directed graph we simply use a transversal T ⊆ G of
Gω. As graphs go, this is trivial in nature. Simply put, we have a single vertex
with [G : Gω] and all the vertices with 1 as the in degree – it is a star.

While the previous reduction to a spanning tree is simple, it does not cary
much power in its representation. For this we switch to a specific class of
actions which provide an opertunity to color the graph in significant ways, thus
providing interested restrictions for spanning trees.
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4.10.1 Automatic Actions

A group action of G on some subset Ω ⊆ G is called an automatic action.
Given an automatic action, we color edges labeled by elements in Ω red, and

those edge labeled by elements outside Ω are colored black. This colored graph
of Ω is called the Ω-colored graph.

A refined approach involves coloring edges labeled by Ω∩Gω for each ω ∈ Ω.
Now we can ask, are there spanning trees of a single color?
For the theory let us move to a concrete action.
Let x ∈ G and let Ω = xG where the action is conjugation. Then the colored

spanning tree problem is equivalent to finding a transversal of Gx which does
not intersect xG. A conjugacy class in which this is possible is termed outer. If
a conjugacy class lacks a transversal that does not intersect the class then it is
called tangled. Furthermore, a group which contains a tangled conjugacy class
is called a tangled group.

There are many examples of tangled groups, for instance each SL2(q) where
q 6= 2i, or SU2(3) and equivalent flavors. In the former, the tangled conjugacy
class is amongst elements of order 4. In the later the elements of order 3 are
tangled.

Let us inspect the case of SL2(3) which is the smallest example. Here we find
that the single Sylow-2-subgroup is isomorphic to Q8, so we adopt the abriviate
i, j, k notation instead of the traditional matrices. It should be noted that

i =
[

0 1
−1 0

]
, j =

[
1 1
1 −1

]
, , i =

[
−1 1
1 1

]
.

Now it is possible to see that in Q8 we have i conjugate only to −i, since
〈i〉 E Q8. The same follows for j and k. Furthermore, since 〈i〉 the centralizer
of i, both ±j and ±k label edges from i to −i. Similarly j has out edges for ±i
and ±k; k has out edges for ±i and ±j. These are the edges accounted for by
the action of Q8. Since 1 and −1 are central in SL2(3) and in Q8 we know that
the only colored edges of the conjugacy class for iSL2(3) can be those of the ±j
and ±k.

Indeed, since SL2(3)/Z(SL2(3)) ∼= A4 we know that the groups of order 4 in
SL2(3) are conjugate by the correspondance theorem. More than this, we know
that the action of SL2(3) on the three subgroups of order 4 requires we map
SL2(3) into S3 thus the kernel of the action is Q8. Since the kernel is maximal,
it is also the stablizer (centralizer).

What this means, however, is that the action of the elements in SL2(3)\Q8

on the six elements of order 4 cannot map i to −i. That is, the orbit of elements
of order 4 is tangled.

In terms of transversals, this means any transversal for Gi, G = SL2(3),
must include some element conjugate to i. Since this is the smallest example it
is worthwhile explicitly noting the criminal coset:

Gij = {j, k,−j,−k}.

Since Gij ⊂ iG, there is no way to select a coset representative not conjugate
to i. There are no monochrome spanning trees.

We express this result in the first theorem:

Theorem 4.10.1. Given a G-set Ω ⊆ G, and an ω ∈ Ω, ωG is tangled if and
only if there exists a g ∈ G where Gωg ⊆ ωG.

The remarkable property of tangled groups is that they are inherintly un-
stable. A simple index 2 extension of SL2(3) into GL2(3) solves the problem.
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Immediately every coset of Gi grows to order 8 which is larger than iG and so
we are free to conclude that the conjugacy class is outer. In fact all tangled
orbits of size k in a group G can be untangled in G × ‘Zk, or indeed in any
group of order |G|k containing G.

Given this simple defeat mechinism, how many tangled groups may there
be?

Our first theorem leads to a test for tangled elements.
TANGLED

Problem: Given g ∈ G

Find: is gG tangled?

Given g ∈ G we construct gG using a transitive closure algorithm on gener-
tors of G which is in polynomial time. Then we find generators A for Gg and
then test if Ag ⊆ gG. It may be shorter to test if Ag ⊆ gG by computing gG

after we have Ag and stop when we find enough elements in gG to cover Ag.

4.11 Always Regular Groups

Suppose that G is a group for which every faithful group action is semiregular,
that is, every faithful transitive action is regular. For now we call such group
always regular. What can be said about the structure of such groups?

The condition extends to subgroups but generally not to quotient groups.
We will see examples of this in a moment. First we transfer the question into
one of introspection – that is, we remove the action from the question.

Proposition 4.11.1. All the following are equivalent:

(i) G is always regular.

(ii) For every non-trivial subgroup H of G, CoreG(H) :=
⋂

g∈G Hg is non-
trivial.

(iii) Every minimal subgroup of G is normal.

Proof. If G is always regular and 1 6= H ≤ G then the transitive action of G on
H has H as a stabilizer. Since H 6= 1 this action is not regular, and thus the
action is not faithful. Indeed, the kernel of the action is by definition CoreG(H)
and is now known to be non-trivial.

Assuming that every non-trivial subgroup has a non-trivial core, consider
any minimal subgroup M . Clearly CoreG(M) ≤ M so CoreG(M) = 1 or M .
Hence CoreG(M) = M and so M is normal in G.

Now let G act transitively and faithfully on X. Then for any x ∈ X, if
Gx 6= 1 then it is non-trivial and therefore contains a minimal subgroup. As
all minimal subgroups are normal in G, the kernel of action must contain this
minimal subgroup, and hence the action is not faithful. So we conclude Gx = 1
and the action is regular.

Proposition 4.11.2. The minimal p-subgroups of G lie in the center of each
Sylow-p-subgroup.

Proof. Now suppose that every minimal subgroup is normal in G. As minimal
subgroups are p-groups, for various primes p, we know they lie in Sylow-p-
subgroups of G. Indeed, as they are normal each lies in each Sylow-p-subgroup.
The action of a Sylow-p-subgroup on a group of order p must be trivial as p
does not divide p− 1. Therefore each is central in the Sylow-p-subgroups.
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Corollary 4.11.3. If p is the smallest prime dividing the order of G, then every
element of order p in G is central. Inparticular, Z(G) 6= 1.

Proof. Let x be an element of order p. G acts on 〈x〉 as 〈x〉 is normal in G.
Therefore CG(x) has index dividing p − 1. But the order of G has p as the
smallest prime so [G : CG(x)] = 1 and x is central in G.

We are well over due for some examples of always regular groups.
Example:

1. Every abelian group is always regular, as all subgroups are normal.

2. Every Hamiltonion group is always regular, as by definition all subgroups
are normal.

3. The generalized quaternionic group Q2i has a unique minimal subgroup, so
it is indeed normal and consequently these are also always regular groups.

4. Cp2 n Cp2 given by the only non-trivial action Cp2”− > ” Aut Cp2 ∼=
Cp × Cp−1. Here the minimal subgroups are central as they lie in the
kernel of the action above.

�

Proposition 4.11.4. Direct products of always regular groups are always reg-
ular.

Proof. Let G and H be always regular groups. Then a minimal subgroup M of
G × H projects non-trivially to either G or H, or both, where it is a minimal
subgroup and consequently normal. The correspondance theorem completes the
proof.

The hope is to classify all always regular groups.
The interest in always regular groups comes from computational problems.

A permutation group acting on n elements may have a normal subgroup whose
quotient cannot be represented by an action on n elements. In fact, in some cases
the smallest possible fiathful action is on no fewer than 2n. These pathalogical
examples prove that algorithms which depend on quotients for recursion will
not succeed for permutation groups without careful planning.

There are two ways this can occur. First of all the quotient group is such
that it has no subgroups of small index. In the original group this means that
every subgroup of small will not contain the normal subgroup with which we
quotient. This makes sense as the stablizers of the original action themselves
do not contian any normal subgroups or the action would be faithless.

The second cause for this is if every small index subgroup of the quotient
contains a normal subgroup. This is reminicint of the always regular condition.

It is the author’s feeling that most of the examples are of the latter type
and that furthermore all such examples are easily managed. The abundance
of normal subgroups in such groups make them generally solvable and even
nilpotent groups. These can be handled efficiently with polycyclic presentations.

We take some time to look at the first type of problem.
If G is a permutation group and K a normal subgroup, then K∩Gx = 1 and

KGx is a block system for the action. Indeed the lattice of normal subgroups
of G is copied into the lattice of G/Gx.
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