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Abstract

This note presents a new algorithm for the computation of
the set of normal subgroups of a finite group. It is based on
lifting via homomorphic images.

1 Introduction

Next to a composition series, the structure of a finite group is
reflected by the lattice of its normal subgroups. It indicates,
for example, possible epimorphic images or decompositions
as (sub)direct products. Furthermore it contains all charac-
teristic subgroups. Contrasting this structural prominence,
however, the problem never seems to have been considered
seriously in the literature and the best algorithm known to
the author is the näıve approach to take normal closures
of conjugacy classes. This requires a priori knowledge of
the conjugacy classes. The alternative approach presented
here avoids this requirement and performs much quicker for
larger groups (even if the classes are known for free). This
will permit to compute the normal subgroups in reasonable
time even for fairly large groups, for which for example the
conjugacy classes could not be computed. Evidence for this
is given in the last section.

The algorithm described below does not explicitly re-
fer to a groups representation, but requires several auxil-
iary routines which in turn may make use of the represen-
tation. It can be applied whenever all these routines can be
applied for a given group. For all those required routines
(element test, composition series/chief series, normal inter-
section, computation of presentations) efficient algorithms
are known and implemented for permutation groups [19] or
groups given by a polycyclic presentation.

2 Setup

Assume that G is a finite group for which we want to deter-
mine the normal subgroups. We start with a chief series for
G. Such a series can be computed [13, 11] by forming the
∗Supported by EPSRC Grant GL/L21013

intersection of conjugates in a composition series of G (this
yields a series of normal subgroups) and refining elementary
abelian subfactors using the MeatAxe [18]. For permutation
groups alternatively the composition series algorithm can be
modified to compute normal subgroups in the first place [3].

Using the homomorphism principle we compute the nor-
mal subgroups of G inductively along this series, in a step
from Ni to Ni+1 < Ni computing the normal subgroups
of G/Ni+1 from those of G/Ni. After the last step for
Ni+1 = 〈1〉 this yields the normal subgroups of G.

Remark 1. Computing representations for factor groups is
not only very hard in the general case; there are situa-
tions where all faithful representation of a factor are much
“larger” than the representation of G we started with [7, 17].
To overcome this problem we always compute with represen-
tatives in G instead of elements of a factor group and replace
subgroups of a factor by their full preimages in G. The el-
ement order of Nig in the factor can be obtained as the
smallest k such that gk ∈ Ni. The readers should convince
themselves that all calculations performed in the next two
sections are possible with representatives and preimages as
well and yield representatives respectively preimages of the
results in the factor group. (Note, however, that in many
cases it is still possible to compute in reasonable time a
faithful permutation representation of reasonable degree for
a factor group if it was required. We don’t require it in this
paper.)

It is sufficient to describe a single lifting step. In this
factor H = G/Ni+1 the image M = Ni/Ni+1 is a minimal
normal subgroup, that is there is no proper subgroup 〈1〉 <
K < M such that K is normal in H. To simplify notation
we assume without loss of generality that Ni+1 = 〈1〉 and
G = H.

If B is a normal subgroup ofG which does not containM ,
then B ∩M = 〈1〉 (as the intersection is a normal subgroup
contained in M) and A = 〈M,B〉 is a normal subgroup
containing M . B is a normal complement to M in A.

Assuming by induction that all normal subgroups A con-
taining M are known a priori, it is therefore sufficient to
show how for a given A > M all possible B can be deter-
mined. This will give rise to all normal subgroups of G via
a loop over all these subgroups.

It is well known [6, Thm. 4.3.A(iii)] that as a minimal
normal subgroup M must be the direct product of copies of
a simple group T . Let n denote the number of direct factors:

M =
n
×
i=1

Ti, Ti ∼= T . Here we have to distinguish two cases,
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depending on whether T is abelian or not.

3 Abelian case

If T is abelian, M is an elementary abelian group – in other
words a vector space over a finite field. A basis m1, . . . ,mn

of M corresponds to a series of subgroups Ui = 〈mj | j ≤ i〉
with

〈1〉 = U0 < U1 < · · · < Un−1 < Un = M.

Element tests in these subgroups permit to decompose an
element of M with respect to the chosen basis.

If a normal complement B to M in A exists, A is the di-
rect product ofM withB andM therefore must be central in
A. In this case all complements to M in A are parametrized
(if they exist) by the group of 1-Cocycles:

Z1(A/M,M) := {γ : A/M →M | (fg)γ = (fγ)g(gγ)

for all f, g ∈ A/M}

If C is a fixed complement, the complement corresponding
to γ ∈ Z1 is of the form

{c · ((cM)γ) | c ∈ C}.

If a presentation for A/M is known, it is possible to com-
pute C as the solution of an inhomogeneous system of linear
equations [5]. If no complements exist, this system has no
solutions. Z1 arises from the corresponding homogeneous
system. A presentation for A/M can either be computed
directly from a representation for A/M or by first comput-
ing a presentation for A and adding words for generators
of M . For permutation groups a presentation can be com-
puted either via a stabilizer chain [4] or from a composition
series [1, 14]. The latter usually yields a better presentation
and can also be modified to yield a presentation for A/M
without the need to compute a permutation representation
of this group first.

The complements parametrized by Z1 are all normal in
A but not necessarily normal in G. We therefore have to
discard those complements that are not normal in G.

Problems may occur if Z1 is large, that is there are many
subgroups of A that complement M . If this happens A is
usually close to abelian. The worst case certainly is if A is
elementary abelian:

Lemma 2. If A is elementary abelian, |A| = pd and |M | =
pn there are (pn)d−n complements to M in A.

Proof. Suppose we have a basis B for M and want to extend
it to a basis ofA. There are pd−pk vectors inA which are not
in a given k-dimensional subspace, therefore we can extent
B in x = (pd − pn)(pd − pn+1) · · · · · (pd − pd−1) possible
ways. The added vectors always span a complement (of
dimension d − n) but there are y = |GLd−n(p)| = (pd−n −
1)(pd−n − p) · · · · · (pd−n − pd−n−1) possible bases for every
complement. Taking the quotient x/y yields the number of
complements.

Usually only very few of these complements are invariant
under G. In the case of an elementary abelian A with
(pn)d−n > 20 we therefore don’t use Z1. Instead we com-
pute the lattice of all G-submodules of A using the algorithm
in [16]. Unless A is central in G (in this case there simply is

a large number of normal subgroups in G) this usually yields
but a few submodules. Of these we take those submodules
which intersect trivially with M and have the right size.

For a solvable A, the same approach can be used with the
invariant subgroups algorithm of [10] generalizing the sub-
module computation [16]. (The size restriction to potential
complements can be applied to avoid creating subgroups too
small to be a complement.) In the examples considered so
far this could always avoid running through a large Z1.

To obtain finally all normal subgroups of G, we perform
the complement computation for all A in which M is central.

4 Nonabelian case

We now consider the case of nonabelian T and M . As a
normal complement, B centralizes M .

The centre of M is trivial. Therefore B is the centralizer
in A of M . We can obtain all B by intersecting all A with
C = CG(M).

Remark 3. The system GAP [9] contains a nearly-linear time
algorithm to compute centralizers of normal subgroups in
permutation groups. Here however G may be a proper factor
group for which we do not necessarily have a faithful permu-
tation representation. Therefore we cannot simply use this
centralizer algorithm but will describe another method that
also works in factor groups when computing with repesen-
tatives and preimages.

To compute this centralizer, we proceed as follows: G
acts transitively on {T1, . . . , Tn}, because M is a minimal
normal subgroup. Let S := NG(T1). As the orbit of T1 un-
der G is of length n, this normalizer (whose full preimage
is simply the normalizer of the preimage of T1) has index n
and therefore can be computed quickly by either a specific
normalizer routine or even a simple Orbit-Stabilizer algo-
rithm.

Lemma 4. Let t ∈ T1, D = CS(t) and E :=
⋂
g∈GD

g.

Then C = CG(M) = E.

Proof. Obviously C centralizes T1 and therefore C ≤ D. As
C C G we have C ≤

⋂
g∈GD

g = E. Vice versa observe that

for s ∈ S we have Ds = CS(ts). As T is simple, the ts gen-
erate T1 and therefore E ≤ CG(T1). For every other k there
is a g ∈ G such that T g1 = Tk and thus Dg = CNG(Tk)(t

g).
Again the tg run for different choices of g through a class of
Tk and therefore E ≤ CG(Tk) for all k. As M = 〈Tk〉, we
have E ≤ C.

As T is simple and nonabelian, it contains involutions (el-
ements of order 2) [8]. As every element of even order has
a power which is an involution, a random search will very
quickly find an involution t ∈ T1. It is shown in [12] that if
T is not of Lie type of characteristic 2 the probability for a
random element being of even order is at least 1/4.

For the computation of CS(t), we use the following gen-
eralization of the “dihedral group trick” [15]:

Lemma 5. Let G be a group and t ∈ G be an involution.
For every g ∈ G let

ot(g) :=
∣∣tg−1tg

∣∣ = |t · tg| .
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a)(J. Bray,[2]) For g ∈ G we have

zt(g) := g−1tgtg−1t · · · ·︸ ︷︷ ︸
2 · ot(g)− 1 letters

∈ CG(t).

b)For g ∈ CG(t) we have zt(g) = g−1, that is zt : G→ CG(t)
is surjective.
c)(R. Parker) If ot(g) is odd, zt is injective on the coset
CG(t) · g. If g is taken from this coset with uniform distri-
bution, zt(g) is from CG(t) with equal distribution.

Proof. a) We have

1 =
(
tg−1tg

)ot(g)
= tg−1tg · tg−1tg · · · · · tg−1tg︸ ︷︷ ︸

4 · ot(g) letters

and therefore

t = g−1tgtg−1t · · · · · tg±tg∓︸ ︷︷ ︸
=zt(g)

·t · g±tg∓t · · · · · tg−1tg︸ ︷︷ ︸
=zt(g)−1

b) For g ∈ CG(t) we have ot(g) = 1.
c) Let c ∈ CG(t). Then ot(g) = ot(cg) and thus

zt(cg) = g−1 · c−1tc · gtg−1 · c−1tc · gt · · · · · tg−1c−1

= g−1tgtg−1tgt · · · · · tg−1c−1 = zt(g)c−1.

Thus for c ∈ CG(t) arbitrary, zt(c
−1 · zt(g) · g) = c.

The zt(s) for a few random s ∈ S will usually generate
CS(t). To ensure that the elements found indeed generate
the full centralizer we use the homomorphism ϕ : M → T1 =
T . For permutation groups the routines for composition
series applied to M (respectively its full preimage if M is a
factor group) yield a faithful small degree representation for
M/ kerϕ as well as this homomorphism effectively.

We compute m := [T : CT (tϕ)]. As T is a simple group
in a small degree permutation representation this is done
quickly.

If a data base of simple groups is available one can al-
ternatively identify the isomorphism type of T (for example
via the size, which often, but not always permits to identify
the type) which usually can be done very quickly. If the size
of an involution centralizer is determined uniquely by the
group (for example if there is only one class of involutions)
this size might be taken, eliminating the need to compute
CT (tϕ). For practical purposes however it seems that the
database lookup takes longer than the calculation of CT (tϕ)
unless T is exceedingly large.

The conjugation action of S induces (as S stabilizes T1)
via ϕ automorphisms of T . These may fuse the class of tϕ
with k other classes of the same size. Therefore we have
[S : CS(t)] = k · m for a natural number k. If we know k
we know the index of CS(t) and thus know when we have
reached the full centralizer.

Remark 6. This fusion of involution classes happens rarely.
A search over the character table library in GAP4 [9] found
just 4 simple groups for which such automorphisms exist,
namely Sp4(4), O+

8 (2), O+
8 (3) and F4(2).

To avoid unnecessary conjugacy tests, we proceed as fol-
lows to compute CS(t):

1. Compute m := [T : CT (tϕ)].

2. For 10 random elements s ∈ S compute zt(s). Let U be
the subgroup generated by these zt(s). If [S : U ] = m
we know that k = 1. Stop.

3. Let orb := [t]. For every element o ∈ orb execute steps
4 and 5.

4. For every generator s of S execute step 5.

5. Let i := ts. If for every o′ ∈ orb we have that iϕ is not
conjugate under T to o′ϕ, then add i to orb.

6. End the loops of step 4 and 5. Let k = |orb|.

7. Let U := 〈U, zt(s)〉 for a random s ∈ S.

8. If [S : U ] > k ·m go to step 7.

The loops in steps 3-5 implement a standard orbit algorithm
on conjugacy classes, given by preimages of their represen-
tatives. They compute the orbit of the class of tϕ.

The computation stops when U equals CS(t). It finishes
because we will encounter all elements of CS(t) by lemma 5
b). If a is the minimum possible number of generators for
CS(t), usually the same number of random elements suffice
to generate CS(t).

Once CS(t) has been obtained we compute C = CG(M)
by lemma 4. We then compute the intersections of C with all
normal subgroups A > M to obtain the normal subgroups
of G. Note that the intersection of normal subgroups in per-
mutation groups is possible in nearly-linear time [19, Lemma
4.6].

Again, it should be stressed that if G is a proper factor
of a larger group no representation of G is needed, but all
calculations can be performed using preimages of subgroups
and representatives of elements.

5 Examples

The algorithm has been implemented by the author in
GAP4 [9]. Table 1 gives runtimes (seconds on a 200MHz
PentiumPro machine under Linux) for various permutation
groups in comparison to the näıve class closure algorithm
mentioned in the first section.

In the example Sp4(4).4 the class of the involution chosen
during the example run in the normal subgroup Sp4(4) fuses
under the full group. This gives an example for class fusion
in the nonabelian case.

The examples show that the new algorithm is almost al-
ways performs better than the näıve algorithm, even when
neglecting the time to compute the conjugacy classes. The
performance gain becomes larger if the group has relatively
few normal subgroups compared to the number of its con-
jugacy classes. Extreme cases are almost simple groups.

For larger groups already the calculation of the classes
can take very long or be completely unfeasible. The new
algorithm then still computes the normal subgroups without
problems.

A shortcoming remains the case of a large Z1 in the
abelian case. So far, however, I have not encountered groups
in which this case could not be treated using the invariant
subgroups approach [10] mentioned.
I would like to thank R. Parker and R. Wilson for the sugges-
tion to use lemma 5. I am also indebted to the anonymous
referee for several helpful remarks.
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G |G| deg normal Cl t old t
Syl2(Co3) 1024 276 153 61 6+257 148
Syl2(Co3) 1024 pc 153 61 6+101 57
[S4(6c)2]2 1152 12 8 20 2+3 3
24 × S5 1920 13 441 112 21+881 42
1
2
[26]L(6) : 2 3840 12 5 23 6+2 9

2.27.32.S3 (≤ Co3) 27648 pc 13 45 8+11 2
2.27.32.S3 (≤ Co3) 27648 72 13 45 10+25 6
[ 1
2
S5

3 ]D(5) 38880 15 5 48 5+8 2

31+4
+ : 4S5 (≤McL : 2) 58320 275 33 10 23+46 31

S3 oA5 466560 15 7 72 36+19 14
31+4

+ : 21+4
− .S5 (≤ Co2) 933120 1080 7 50 55+229 58

1
2
[A3

5 : 2]S3 1296000 15 4 50 17+4 2

S5 × S5 × S5 1728000 15 38 343 110+516 32
Sp4(4).4 3916800 170 4 30 15+14 5
(21+6

+ × 24).A8 (≤ Co2) 41287680 240 6 111 — 30

(2× 21+8
+ : U4(2)) : 2 (≤ Fi22) 53904160 1024 6 115 395+299 312

26+8 : (A7 × S3) (≤ Fi23) 247726080 4535 8 133 — 274
1
2
[A4

5.2]S4 311040000 20 5 118 60+24 6
1
2
[M4

12.2]S4 1.958 · 1021 96 5 — — 46

Column “deg” gives the degree (or “pc” for groups given by a pc presentation), “normal” the number of normal subgroups
and “Cl” the number of classes. The times are given in seconds, t old for the näıve algorithm (separated in conjugacy class
computation + normal subgroups computation) and t for the new algorithm. A dash (—) indicates that the calculations did
not finish in reasonable time.

Table 1: Example runtimes
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