26) a) Let \(\zeta_1, \ldots, \zeta_k \in \mathbb{T} \) be roots of unity (not necessarily different). Show that if \(\sum_{i=1}^{k} \zeta_i = k \) then \(\zeta_i = 1 \) for all \(i \). Show that if (absolute value) \(|\sum_{i=1}^{k} \zeta_i| = k \), then \(\zeta_i = \zeta_j \) for all \(i, j \).

b) Let \(G \) be a finite group and \(\chi \) be a character, associated to the representation \(\varphi: G \to \text{GL}_n(\mathbb{C}) \). We define the kernel of \(\chi \) as the subset \(\ker \chi = \{ g \in G \mid \chi(g) = \chi(1_G) \} \subseteq G \). Show that \(\ker \chi = \ker \varphi \).

c) We define the center of a character \(\chi \) as \(Z(\chi) = \{ g \in G \mid \chi(1) = |\chi(g)| \} \). Show that \(Z(\chi) \) is the set of \(g \in G \) such that \(\varphi(g) \in Z(\varphi(G)) \).

d) Show that if \(\chi = \psi + \rho \) for two characters \(\psi \) and \(\rho \), then \(\ker \chi = \ker \psi \cap \ker \rho \). Conclude that the character table of \(G \) determines the normal subgroups of \(G \) (consider the action on the cosets of a normal subgroup).

e) Show (using the regular representation) that

\[
Z(G) = \bigcap_{\chi \in \text{Irr}(G)} Z(\chi),
\]

thus the character table also determines the centre of \(G \).

27) Show that the sum over a column of a character table is an integer. (Note: it can be negative.)

28) Let \(G \) be a finite group with conjugacy classes \(K_1, \ldots, K_n \). We denote the class sums in \(\mathbb{C}G \) by \(C_i = \sum_{g \in C_i} g \). These class sums span the centre of the group algebra, they multiply according to the formula

\[
C_i C_j = \sum_k a_{i,j}^k C_k
\]

with \(a_{i,j}^k \in \mathbb{Z} \) (We have shown this in the lecture).

Show that

\[
a_{i,j}^k = \frac{|C_i||C_j|}{|G|} \sum_{\chi \in \text{Irr}(G)} \frac{\chi(g_i)\chi(g_j)\overline{\chi(g_k)}}{\chi(1)}
\]

(Hint: use the second orthogonality relation and central characters.)

29) Let \(G \) be a finite group. Show:

a) If \(g \in G \) and \(x \in G \). There is a \(y \in G \) such that \(g \) is conjugate to \([x, y] = x^{-1}y^{-1}xy \) if and only if

\[
\sum_{\chi \in \text{Irr}(G)} \frac{|\chi(x)|^2 \overline{\chi(g)}}{\chi(1)} \neq 0
\]

Hint: Assume that \(g \in C_g, x \in C_x \) and \(x^{-1} \in C_{x^{-1}} \) (conjugacy classes) and show that \(g \) is conjugate to \([x, y] = x^{-1}y^{-1} \) if and only if \(C_x \cdot C_{x^{-1}} \) has a nonzero coefficient for \(C_g \). Then use central characters.

b) \(g \) is a commutator (i.e. there exist \(a, b \in G \) such that \(g = [a, b] \) if and only if

\[
\sum_{\chi \in \text{Irr}(G)} \frac{\chi(g)}{\chi(1)} \neq 0
\]
Bonus Problem) For a finite group G we define $G' = \langle [a, b] = a^{-1}b^{-1}ab \mid a, b \in G \rangle \triangleleft G$ (the derived subgroup, it also is the smallest normal subgroup with abelian quotient). It is generated by commutators, but, as we will see, not every element is required to be a commutator.

Let $G = \langle (1, 2, 5)(3, 6, 11)(4, 7, 9)(8, 10, 12), (1, 8, 4, 3)(5, 12)(6, 10)(9, 11) \rangle$ be a certain group of order 96. Then (e.g. using GAP) we obtain the character table of G as given below.

a) Determine in this table the classes which constitute G'.

b) Show using the criterion of problem 29b) that there is an element in G' that is not a commutator (but only a product of commutators).

c) If G is a simple group then clearly $G = G'$. The conjecture of Ore – recently being proven by Liebeck, O'Brien, Shalev and Tiep – states that for a simple group G all elements are proper commutators. Verify this conjecture for A_6, using a character table (obtained from GAP, or whatever source you deem appropriate).

<table>
<thead>
<tr>
<th></th>
<th>1a</th>
<th>3a</th>
<th>4a</th>
<th>4b</th>
<th>2a</th>
<th>3b</th>
<th>6a</th>
<th>4c</th>
<th>4d</th>
<th>2b</th>
<th>6b</th>
<th>2c</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ_1</td>
<td>1</td>
</tr>
<tr>
<td>χ_2</td>
<td>1</td>
<td>α</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>$\bar{\alpha}$</td>
<td>α</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>$\bar{\alpha}$</td>
<td>1</td>
</tr>
<tr>
<td>χ_3</td>
<td>1</td>
<td>$\bar{\alpha}$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>α</td>
<td>$\bar{\alpha}$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>α</td>
<td>1</td>
</tr>
<tr>
<td>χ_4</td>
<td>2</td>
<td>-1</td>
<td>.</td>
<td>.</td>
<td>-2</td>
<td>-1</td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>2</td>
<td>1</td>
<td>-2</td>
</tr>
<tr>
<td>χ_5</td>
<td>2</td>
<td>$-\alpha$</td>
<td>.</td>
<td>.</td>
<td>-2</td>
<td>$-\alpha$</td>
<td>$\bar{\alpha}$</td>
<td>.</td>
<td>.</td>
<td>2</td>
<td>α</td>
<td>-2</td>
</tr>
<tr>
<td>χ_6</td>
<td>2</td>
<td>$-\alpha$</td>
<td>.</td>
<td>.</td>
<td>-2</td>
<td>$-\alpha$</td>
<td>α</td>
<td>.</td>
<td>.</td>
<td>2</td>
<td>$\bar{\alpha}$</td>
<td>-2</td>
</tr>
<tr>
<td>χ_7</td>
<td>3</td>
<td>.</td>
<td>-1</td>
<td>-1</td>
<td>3</td>
<td>.</td>
<td>.</td>
<td>-1</td>
<td>-1</td>
<td>3</td>
<td>.</td>
<td>3</td>
</tr>
<tr>
<td>χ_8</td>
<td>3</td>
<td>.</td>
<td>β</td>
<td>$\bar{\beta}$</td>
<td>-1</td>
<td>.</td>
<td>.</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>.</td>
<td>3</td>
</tr>
<tr>
<td>χ_9</td>
<td>3</td>
<td>.</td>
<td>$\bar{\beta}$</td>
<td>β</td>
<td>-1</td>
<td>.</td>
<td>.</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>.</td>
<td>3</td>
</tr>
<tr>
<td>χ_{10}</td>
<td>3</td>
<td>.</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>.</td>
<td>.</td>
<td>$\bar{\beta}$</td>
<td>β</td>
<td>-1</td>
<td>.</td>
<td>3</td>
</tr>
<tr>
<td>χ_{11}</td>
<td>3</td>
<td>.</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>.</td>
<td>.</td>
<td>β</td>
<td>$\bar{\beta}$</td>
<td>-1</td>
<td>.</td>
<td>3</td>
</tr>
<tr>
<td>χ_{12}</td>
<td>6</td>
<td>.</td>
<td>.</td>
<td>2</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-2</td>
<td>.</td>
<td>-6</td>
</tr>
</tbody>
</table>

with $\alpha = e^{\frac{4\pi}{3}i}$ and $\beta = -1 + 2i$.