41) Let F be a field and x_{1}, \ldots, x_{n} be indeterminates. A polynomial $f \in F\left[x_{1}, \ldots, x_{n}\right]$ is called symmetric, if for any permutation σ of the indeterminates we have that $\sigma(f)=f$.
$\overline{\text { Obviously, }}$ the following functions (called elementary symmetric polynomials) are symmetric:

$$
\begin{aligned}
S_{1}\left(x_{1}, \ldots, x_{n}\right) & =x_{1}+x_{2}+x_{3}+\cdots+x_{n} \\
S_{2}\left(x_{1}, \ldots, x_{n}\right) & =x_{1} x_{2}+x_{1} x_{3}+\cdots+x_{n-1} x_{n} \\
S_{3}\left(x_{1}, \ldots, x_{n}\right) & =\sum_{i<j<k} x_{1} x_{j} x_{k} \\
& \vdots \\
S_{n}\left(x_{1}, \ldots, x_{n}\right) & =x_{1} x_{2} \cdots \cdots x_{n}
\end{aligned}
$$

The aim of this exercise is to prove the fundamental theorem of elementary symmetric polynomials:
Theorem: Let $f \in F\left[x_{1}, \ldots, x_{n}\right]$ symmetric, then exists $g \in F\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
f\left(x_{1}, \ldots, x_{n}\right)=g\left(S_{1}\left(x_{1}, \ldots, x_{n}\right), S_{2}\left(x_{1}, \ldots, x_{n}\right), \ldots, S_{n}\left(x_{1}, \ldots, x_{n}\right)\right) .
$$

Example: $x_{1}^{2} x_{2}^{2} x_{3}+x_{1}^{2} x_{2} x_{3}^{2}+x_{1} x_{2}^{2} x_{3}^{2}+x_{1}^{2}+2 x_{1} x_{2}+2 x_{1} x_{3}+x_{2}^{2}+2 x_{2} x_{3}+x_{3}^{2}=S_{1}^{2}+S_{2} * S_{3}$.
We define an ordering on monomials by setting: $x_{1}^{d_{1}} x_{2}^{d_{2}} \cdots x_{n}^{d_{n}}>y_{1}^{e_{1}} y_{2}^{e_{2}} \cdots y_{n}^{e_{n}}$ if and only if for some i : $d_{j}=e_{j}$ for $j<i$ and $d_{i}>e_{i}$ (lexicographic comparison of the exponent vectors).
a) Suppose that $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$ is a sequence of integers. Show that $x_{1}^{d_{1}} x_{2}^{d_{2} \cdots x_{n}^{d_{n}} \text { is the largest (with }}$ respect to this ordering) term of the polynomial

$$
T_{d_{1}, \ldots, d_{n}}\left(x_{1}, \ldots, x_{n}\right):=S_{1}^{d_{1}-d_{2}-d_{3}-\cdots-d_{n}} \cdots \cdots S_{n-2}^{d_{n-2}-d_{n-1}-d_{n}} \cdot S_{n-1}^{d_{n-1}-d_{n}} \cdot S_{n-1}^{d_{n-1}-d_{n}} \cdot S_{n}^{d_{n}}
$$

b) Suppose that $f\left(x_{1}, \ldots, x_{n}\right)$ is symmetric and $c \cdot x_{1}^{d_{1}} x_{2}^{d_{2}} \ldots x_{n}^{d_{n}}$ is the largest (with respect to this ordering) term of f and let $T_{d_{1}, \ldots, d_{n}}\left(x_{1}, \ldots, x_{n}\right)$ for these d_{i} as in a). Show that the largest monomial of $f\left(x_{1}, \ldots, x_{n}\right)-c \cdot T_{d_{1}, \ldots, d_{n}}\left(x_{1}, \ldots, x_{n}\right)$ is strictly smaller than $x_{1}^{d_{1}} x_{2}^{d_{2}} \cdots x_{n}^{d_{n}}$.
c) Show that by iterating the process in b) you can build the polynomial g as claimed in the theorem.
d) Express

$$
\begin{aligned}
f= & x^{2} y+x^{2} z+3 x y z+y^{2} x+y^{2} z+z^{2} x+y z^{2}-2 x^{3} y^{3} z \\
& -4 x^{3} y^{2} z^{2}-4 x^{2} y^{3} z^{2}-2 x^{3} z^{3} y-4 x^{2} y^{2} z^{3}-2 x y^{3} z^{3}
\end{aligned}
$$

as a polynomial in the elementary symmetric polynomials in x, y and z.

