30) a) Consider the polynomial $f(x)=x^{4}+1 \in \mathbb{Z}[x]$. Evaluate $g(x):=f(x+1)$ and show using Eisenstein's criterion that $g(x)$ is irreducible. Conclude that $f(x)$ is irreducible.
b) For a prime p let

$$
\Phi_{p}(x)=\frac{x^{p}-1}{x-1}=x^{p-1}+x^{p-2}+\cdots+x+1
$$

the p-th cyclotomic polynomial. Show, as in a) that $\Phi_{p}(x)$ is irreducible.
31) Let F be a field and $f, g \in F[x, y]$. Suppose that $\left(x_{0}, y_{0}\right)$ is a common solution to $f(x, y)=0$, $g(x, y)=0$.
a) Show that y_{0} must be a root of $\operatorname{Res}_{x}(f(x, y), g(x, y))$.
b) Describe a method, based on a), that solves a system of polynomial equations by first eliminating all variables but one using resultants, then solves this polynomial in one variable, and finally uses back-substitution to find all solutions.
c) Use the method of b) to find all rational solution to the following system of equations:

$$
\left\{x^{2} y-3 x y^{2}+x^{2}-3 x y=0, x^{3} y+x^{3}-4 y^{2}-3 y+1=0\right\}
$$

32) Let R be an integral domain and F the algebraic closure of its quotient field. $f(x), g(x) \in R[x]$. Suppose that $\alpha, \beta \in F$ such that $f(\alpha)=0, g(\beta)=0$.
a) Show that $\operatorname{Res}(f(x-y), g(y), y)$ has a root $\alpha+\beta$. (Note: Similar expressions exist for $\alpha-\beta, \alpha \cdot \beta$ and α / β.)
b) Construct a polynomial $f \in \mathbb{Q}[x]$ such that $f(\sqrt{5}+\sqrt[3]{2})=0$.
33) Let F be a field. For a polynomial

$$
f=\sum_{i=0}^{n} a_{i} x^{i} \in F[x]
$$

we define the derivative $D f$ as

$$
D f=\sum_{i=1}^{n} i \cdot a_{i} x^{i-1}
$$

(with i being the the corresponding sum of 1s.)
a) Show that for $f, g \in F[x]$ we have that $D(f g)=(D f) g+f(D g)$.
b) Suppose that $f=a_{n} \Pi\left(x-\alpha_{i}\right)$ in F. Show that f has roots with multiplicity >1 if and only if f and $D f$ have a nonconstant gcd.
c) The discriminant of a polynomial $f \in F[x]$ of degree m with leading coefficient a is defined as

$$
\operatorname{Disc}(f)=(-1)^{\frac{m(m-1)}{2}} \operatorname{Res}(f, D f) / a
$$

Show that $\operatorname{Disc}(f)=0$ if and only if f has roots with multiplicity >1 (possibly in a larger field than $F)$.
d) Show that if $f=\prod_{i}\left(x-\alpha_{i}\right)$, we have that $\operatorname{Disc}(f)=\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2}$.
34) a) Let $f(x) \in \mathbb{Z}[x]$ be irreducible. Show that there are only finitely many primes p, such that the reduction of f modulo p has multiple roots. (Hint: Discriminant)
b) Determine all such primes for the polynomial $x^{7}+15 x^{6}+12$.

Classes of Integral Domains

F is a field

UFD: irreducibles are prime, gcd exists
PID: gcd can be expressed in the form xa+yb
Euclidean: gcd can be computed with the euclidean algorithm
Dedekind Domain: Every Ideal is a product of prime ideals (Rings of algebraic integers in a field extension are Dedekind domains)

