22) We form a semidirect product $P = N \rtimes S$ for the map $\varphi: S \to \operatorname{Aut}(N)$. Show that $P = N \times T$ (then obviously $T \cong S$, but not necessarily T = S) if and only if $\varphi(S) \leq \operatorname{Inn}(N)$.

23) Let *V* be a vector space. We consider the set *L* of *lines* (that is subsets of *V* of the form $\underline{\mathbf{a}} + \lambda \underline{\mathbf{b}}$ for $\underline{\mathbf{a}}, 0 \neq \underline{\mathbf{b}} \in V$. Two lines are parallel if their $\underline{\mathbf{b}}$ -vectors are linearly dependent. We call A = (V, L) an *affine space*.

Let *G* be the group of all *affine transformations* of *V*, that is bijective maps $A \rightarrow A$ that map lines to lines and preserve parallelity.

a) Let $G \ge T = \{t_{\underline{a}} = (\underline{x} \mapsto \underline{x} + \underline{a}) \mid \underline{a} \in V\}$ be the set of *translations* and L = GL(V) the set of linear transformations of V. Show that $T \triangleleft G$, $L \le G$ and $T \cap L = \langle 1 \rangle$. b) Show that G is the semidirect product of T with L.

24) a) Let p > q prime such that $p \not\equiv 1 \pmod{q}$. Show that there is only one group of order pq up to isomorphism (namely the cyclic group).

b) Let p > q prime such that $p \equiv 1 \pmod{q}$. Show that there are (up to isomorphism) two groups of order pq, the cyclic group and a nonabelian semidirect product $Z_p \rtimes Z_q$.

c) Show that every group of order p^2 (for p prime) is abelian. (**Hint:** Show that if G/Z(G) is cyclic, then G is abelian.)

This shows that $Z_p \times Z_p$ and Z_{p^2} are the two groups of order p^2 .

25) a) Let *G* be a nonabelian group of order 12. Show that *G* must be a semidirect product of a 2-Sylow subgroup with a 3-Sylow subgroup or vice versa.

b) Classify the possible (nonabelian) semidirect products of C_3 with C_4 .

c) Classify the possible (nonabelian) semidirect products of C_3 with $C_2 \times C_2$.

d) Classify the possible (nonabelian) semidirect products of C_4 with C_3 .

e) Classify the possible (nonabelian) semidirect products of $C_2 \times C_2$ with C_3 .

f) Show that there are (up to isomorphism) three nonabelian groups of order 12.