22) We form a semidirect product $P=N \rtimes S$ for the map $\varphi: S \rightarrow \operatorname{Aut}(N)$. Show that $P=N \times T$ (then obviously $T \cong S$, but not necessarily $T=S$) if and only if $\varphi(S) \leq \operatorname{Inn}(N)$.
23) Let V be a vector space. We consider the set L of lines (that is subsets of V of the form $\underline{\mathbf{a}}+\lambda \underline{\mathbf{b}}$ for $\underline{\mathbf{a}}, 0 \neq \underline{\mathbf{b}} \in V$. Two lines are parallel if their $\underline{\mathbf{b}}$-vectors are linearly dependent. We call $A=(V, L)$ an affine space.
Let G be the group of all affine transformations of V, that is bijective maps $A \rightarrow A$ that map lines to lines and preserve parallelity.
a) Let $G \geq T=\left\{t_{\underline{\mathbf{a}}}=(\underline{\mathbf{x}} \mapsto \underline{\mathbf{x}}+\underline{\mathbf{a}}) \mid \underline{\mathbf{a}} \in V\right\}$ be the set of translations and $L=\mathrm{GL}(V)$ the set of linear transformations of V. Show that $T \triangleleft G, L \leq G$ and $T \cap L=\langle 1\rangle$.
b) Show that G is the semidirect product of T with L.
24) a) Let $p>q$ prime such that $p \not \equiv 1(\bmod q)$. Show that there is only one group of order $p q$ up to isomorphism (namely the cyclic group).
b) Let $p>q$ prime such that $p \equiv 1(\bmod q)$. Show that there are (up to isomorphism) two groups of order $p q$, the cyclic group and a nonabelian semidirect product $Z_{p} \rtimes Z_{q}$.
c) Show that every group of order p^{2} (for p prime) is abelian. (Hint: Show that if $G / Z(G)$ is cyclic, then G is abelian.)
This shows that $Z_{p} \times Z_{p}$ and $Z_{p^{2}}$ are the two groups of order p^{2}.
25) a) Let G be a nonabelian group of order 12 . Show that G must be a semidirect product of a 2-Sylow subgroup with a 3-Sylow subgroup or vice versa.
b) Classify the possible (nonabelian) semidirect products of C_{3} with C_{4}.
c) Classify the possible (nonabelian) semidirect products of C_{3} with $C_{2} \times C_{2}$.
d) Classify the possible (nonabelian) semidirect products of C_{4} with C_{3}.
e) Classify the possible (nonabelian) semidirect products of $C_{2} \times C_{2}$ with C_{3}.
f) Show that there are (up to isomorphism) three nonabelian groups of order 12.
