- **18)** Let $|G| = p^a$ for p prime. Show:
 - 1. The upper central series, defined by $U_1 = Z(G)$, $U_{i+1}/U_i = Z(G/U_i)$ ascends to G.
 - 2. The *lower central series*, defined by $L_1 = G$, $L_i = [G, L_{i-1}] = \langle [g, h] | g \in G, h \in L_{i-1} \rangle$ descends to the trivial subgroup.
 - 3. For every subgroup $U \leq G$ we have that $N_G(U)$ is strictly larger than U.

(Note: One can show that these properties are mutually equivalent and in turn imply that *G* is the direct product of its Sylow subgroups. Such groups are called *nilpotent*)

- **19)** We define $PSL_n(q) = GL_n(q)/Z$ with $Z = \{a \cdot I \mid a \in F_q^*\}$. Show, by considering suitable actions, that $A_5 \cong PSL_2(4) \cong PSL_2(5)$.
- **20**) Let *G* the group of rotations of an icosahedron.
- a) Let $S \le G$ be the stabilizer of a face. Show that |S| = 3 and [G:S] = 20, so |G| = 60.
- b) Now consider a configuration of 3 pairs of opposite edges such that the lines connecting the mid points of the opposite edges are mutually orthogonal. (The picture on the right illustrates one such a configuration afforded by the inner struts, connecting pairs of opposite edges.) Show that there are 5 such configurations and that this allows us to consider G as a subgroup of S_5 .
- c) Using that A_5 is simple nonabelian, show that A_5 is the only subgroup of S_5 of order 60 and conclude that $G \cong A_5$.
- d) Show that there is a nontrivial homomorphism $A_5 \to O_3(\mathbb{R})$, the group of orthogonal transformations of \mathbb{R}^3 .

21) Show that every group of order < 60 that is not of prime order has a nontrivial normal subgroup. (By induction this shows that every group of order < 60 is solvable.)

Hint: Consider the case that $|G| = p^n q$ with $p \neq q$ prime generically.