13) Let G be finite and solvable, i.e. there exists a subnormal series $\langle 1\rangle=G_{0} \triangleleft G_{1} \triangleleft \cdots \triangleleft G_{m}=G$ with G_{i+1} / G_{i} is cyclic of prime order.
Show that there exists a (possibly different) subnormal series $\langle 1\rangle=N_{0} \triangleleft N_{1} \triangleleft \cdots \triangleleft N_{k}=G$ with $N_{1}, \ldots N_{k} \triangleleft G$ and $N_{i+1} / N_{i} \cong C_{p_{i}}^{e_{i}}$. (That is the group is composed from vector spaces of varying dimensions over finite fields of different characteristic.)
14) Let G be a group and $S \leq G$. Show that there is a homomorphism $\varphi: N_{G}(S) \rightarrow \operatorname{Aut}(S)$.
15) A subgroup $C \leq G$ is called characteristic if $C^{\alpha}=C$ for all $\alpha \in \operatorname{Aut}(G)$.
a) Show that any characteristic subgroup must be normal.
b) Give an example of a normal subgroup that is not characteristic. (Hint: consider $G=C_{2} \times C_{2}$.)
c) Show that if C is characteristic in G then there are homomorphisms $\varphi: G \rightarrow \operatorname{Aut}(G / C)$ and $\rho: G \rightarrow \operatorname{Aut}(C)$. (Note: $\operatorname{ker} \varphi \cap \operatorname{ker} \rho$ does not need to be trivial!)
d) Let $G=D_{8}=\langle(1,2,3,4),(1,3)\rangle$ and $C=\langle(1,3)(2,4)\rangle$. Show that C is characteristic in G. (You can do so without any concrete knowledge of $\operatorname{Aut}(G)$.)
16) Let C_{n} be the cyclic group of order n. Show (very useful facts):
a) $\operatorname{Aut}\left(C_{n}\right) \cong\left(\mathbb{Z}_{n}\right)^{\times}$, that is the multiplicative units modulo n. (Thus in particular $\left|\operatorname{Aut}\left(C_{n}\right)\right|=$ $\varphi(n)$.)
b) If $n=a \cdot b$ with $\operatorname{gcd}(a, b)=1$ then $\operatorname{Aut}\left(C_{n}\right) \cong \operatorname{Aut}\left(C_{a}\right) \times \operatorname{Aut}\left(C_{b}\right)$.
c) If $p>2$ prime, then $\operatorname{Aut}\left(C_{p^{a}}\right) \cong C_{(p-1) p^{a-1}}$. (Hint: Show that:

$$
(1+p)^{p^{k}} \equiv 1+p^{k+1} \bmod p^{k+2}
$$

and use this to conclude that $1+p \in \mathbb{Z}_{p^{a}}^{\times}$has order p^{a-1}. Also show that if $\mathbb{Z}_{p}^{\times}=\langle x\rangle$ then $x^{p^{a-1}}$ has order $p-1$ in $\mathbb{Z}_{p^{a}}$. Thus $x^{p^{a-1}}(1+p)$ is a generator ot $\mathbb{Z}_{p^{a}}^{\times}$.
d) If $a \geq 3$ we have that $\operatorname{Aut}\left(C_{2^{a}}\right)$ is not cyclic. (Hint: Work modulo 8)

Note: One can show similar to c) that 5 has order 2^{a-2} in $\mathbb{Z}_{2^{a}}^{\times}$, thus $\operatorname{Aut}\left(C_{2^{a}}\right) \cong C_{2} \times C_{p^{a-2}}$.
17) a) Assume that G acts on Ω and that $N \triangleleft G$ with $[G: N]=2$. Show that for $\omega \in \Omega$ either

- $\omega^{N}=\omega^{G}$ and $\left[\operatorname{Stab}_{G}(\omega): \operatorname{Stab}_{N}(\omega)\right]=2$, or
- $\operatorname{Stab}_{G}(\omega) \leq N$ and for $\Delta=\omega^{N}$ we have that $\omega^{G}=\Delta \cup \Delta^{g}$ for $g \in G-N$ (here Δ^{g} is the set-wise image), so in particular $\left|\omega^{G}\right|=2\left|\omega^{N}\right|$.
b) Determine (i.e. class representatives and class orders) the conjugacy classes of A_{5}, using the conjugacy classes of S_{5}.
c) A normal subgroup of a group is the union of conjugacy classes. Show (with class orders from b) that A_{5} cannot have any nontrivial normal subgroup (and thus is simple).

