13) Let *G* be finite and solvable, i.e. there exists a subnormal series $\langle 1 \rangle = G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_m = G$ with G_{i+1}/G_i is cyclic of prime order.

Show that there exists a (possibly different) subnormal series $\langle 1 \rangle = N_0 \triangleleft N_1 \triangleleft \cdots \triangleleft N_k = G$ with $N_1, \ldots, N_k \triangleleft G$ and $N_{i+1}/N_i \cong C_{p_i}^{e_i}$. (That is the group is composed from vector spaces of varying dimensions over finite fields of different characteristic.)

14) Let *G* be a group and $S \leq G$. Show that there is a homomorphism $\varphi: N_G(S) \to \operatorname{Aut}(S)$.

15) A subgroup $C \leq G$ is called *characteristic* if $C^{\alpha} = C$ for all $\alpha \in Aut(G)$.

a) Show that any characteristic subgroup must be normal.

b) Give an example of a normal subgroup that is not characteristic. (Hint: consider $G = C_2 \times C_2$.)

c) Show that if *C* is characteristic in *G* then there are homomorphisms $\varphi: G \to \operatorname{Aut}(G/C)$ and $\rho: G \to \operatorname{Aut}(C)$. (Note: ker $\varphi \cap \ker \rho$ does not need to be trivial!)

d) Let $G = D_8 = \langle (1, 2, 3, 4), (1, 3) \rangle$ and $C = \langle (1, 3)(2, 4) \rangle$. Show that *C* is characteristic in *G*. (You can do so without any concrete knowledge of Aut(*G*).)

16) Let C_n be the cyclic group of order n. Show (very useful facts): a) Aut $(C_n) \cong (\mathbb{Z}_n)^{\times}$, that is the multiplicative units modulo n. (Thus in particular $|\text{Aut}(C_n)| = \varphi(n)$.)

b) If $n = a \cdot b$ with gcd(a, b) = 1 then $Aut(C_n) \cong Aut(C_a) \times Aut(C_b)$.

c) If p > 2 prime, then Aut $(C_{p^a}) \cong C_{(p-1)p^{a-1}}$. (Hint: Show that:

$$(1+p)^{p^k} \equiv 1+p^{k+1} \mod p^{k+2}$$

and use this to conclude that $1 + p \in \mathbb{Z}_{p^a}^{\times}$ has order p^{a-1} . Also show that if $\mathbb{Z}_p^{\times} = \langle x \rangle$ then $x^{p^{a-1}}$ has order p - 1 in \mathbb{Z}_{p^a} . Thus $x^{p^{a-1}}(1 + p)$ is a generator of $\mathbb{Z}_{p^a}^{\times}$.) d) If $a \ge 3$ we have that Aut (C_{2^a}) is not cyclic. (**Hint:** Work modulo 8)

Note: One can show similar to c) that 5 has order 2^{a-2} in $\mathbb{Z}_{2^a}^{\times}$, thus $\operatorname{Aut}(C_{2^a}) \cong C_2 \times C_{p^{a-2}}$.

17) a) Assume that *G* acts on Ω and that $N \triangleleft G$ with [G:N] = 2. Show that for $\omega \in \Omega$ either

- $\omega^N = \omega^G$ and $[\operatorname{Stab}_G(\omega) : \operatorname{Stab}_N(\omega)] = 2$, or
- Stab_G(ω) ≤ N and for Δ = ω^N we have that ω^G = Δ ∪ Δ^g for g ∈ G − N (here Δ^g is the set-wise image), so in particular |ω^G| = 2 |ω^N|.

b) Determine (i.e. class representatives and class orders) the conjugacy classes of A_5 , using the conjugacy classes of S_5 .

c) A normal subgroup of a group is the union of conjugacy classes. Show (with class orders from b) that A_5 cannot have any nontrivial normal subgroup (and thus is simple).