Homework (due May 2)

Mathematics 567

59) (This came up in my research last month...)

For $n \ge 1$, m > 1 reduction modulo m gives a homomorphism $\varphi: SL_n(\mathbb{Z}) \to SL_n(\mathbb{Z}/m\mathbb{Z})$. $(SL_n(\mathbb{Z}) = \{M \in \mathbb{Z}^{n \times n} | \det(M) = 1\}$.) However for a matrix $A \in SL_n(\mathbb{Z}/m\mathbb{Z})$ the obvious preimage $\in \mathbb{Z}^{n \times n}$ does not neccessarily have determinant 1. (An example is given in part b))

a) Let $B \in \mathbb{Z}^{n \times n}$ such that $B \mod m = A$. Let B = PDQ be the Smith normal form of B. What can you tell about det(B) and about Q? Show how to find a matrix $C \in SL_n(\mathbb{Z})$ such that $C \mod m = A$. b) Find such a matrix C for m = 7 and

60) Show that two 3×3 matrices are similar if and only if they have the same characteristic polynomial and the same minimal polynomial. Give a counterexample to this assertion for 4×4 matrices.

61) Determine the characteristic and the minimal polynomial of the following matrix over \mathbb{F}_2 :

62) Let

$$A := \begin{pmatrix} -3 & -5 & 6\\ -16 & -19 & 24\\ -16 & -20 & 25 \end{pmatrix}, \qquad B := \begin{pmatrix} 1 & 1 & -1\\ 0 & 2 & -1\\ 0 & 1 & 0 \end{pmatrix}$$

a) Determine the rational normal form of *A* and find an invertible matrix $Q \in \mathbb{Q}^{3\times 3}$ such that $Q^{-1}AQ$ is in rational normal form.

b) Determine the characteristic polynomial and the minimal polynomial of *A*.

c) Show that *A* and *B* are similar.

d) Find an invertible matrix $P \in \mathbb{Q}^{3 \times 3}$ such that $P^{-1}AP = B$.

63) a) Let *F* be a field and let $A \in F^{n \times n}$. Show that $A \sim A^T$. b) Show that there cannot be a single matrix $B \in GL_n(F)$ such that $A^B = A^T$. (That is, the statement

in a) is $\forall A \exists B : A^B = A^T$ and not $\exists B \forall A$.