59) (This came up in my research last month...)

For $n \geq 1, m>1$ reduction modulo m gives a homomorphism $\varphi: \operatorname{SL}_{n}(\mathbb{Z}) \rightarrow \operatorname{SL}_{n}(\mathbb{Z} / m \mathbb{Z})$. $\left(\operatorname{SL}_{n}(\mathbb{Z})=\right.$ $\left\{M \in \mathbb{Z}^{n \times n} \mid \operatorname{det}(M)=1\right\}$.) However for a matrix $A \in \operatorname{SL}_{n}(\mathbb{Z} / m \mathbb{Z})$ the obvious preimage $\epsilon \mathbb{Z}^{n \times n}$ does not neccessarily have determinant 1. (An example is given in part b))
a) Let $B \in \mathbb{Z}^{n \times n}$ such that $B \bmod m=A$. Let $B=P D Q$ be the Smith normal form of B. What can you tell about $\operatorname{det}(B)$ and about Q ? Show how to find a matrix $C \in \mathrm{SL}_{n}(\mathbb{Z})$ such that $C \bmod m=A$. b) Find such a matrix C for $m=7$ and

$$
A=\left(\begin{array}{llll}
5 & 5 & 1 & 4 \\
6 & 2 & 2 & 5 \\
1 & 6 & 0 & 3 \\
5 & 5 & 4 & 0
\end{array}\right)
$$

60) Show that two 3×3 matrices are similar if and only if they have the same characteristic polynomial and the same minimal polynomial. Give a counterexample to this assertion for 4×4 matrices.
61) Determine the characteristic and the minimal polynomial of the following matrix over \mathbb{F}_{2} :

$$
\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0
\end{array}\right)
$$

62) Let

$$
A:=\left(\begin{array}{rrr}
-3 & -5 & 6 \\
-16 & -19 & 24 \\
-16 & -20 & 25
\end{array}\right), \quad B:=\left(\begin{array}{rrr}
1 & 1 & -1 \\
0 & 2 & -1 \\
0 & 1 & 0
\end{array}\right)
$$

a) Determine the rational normal form of A and find an invertible matrix $Q \in \mathbb{Q}^{3 \times 3}$ such that $Q^{-1} A Q$ is in rational normal form.
b) Determine the characteristic polynomial and the minimal polynomial of A.
c) Show that A and B are similar.
d) Find an invertible matrix $P \in \mathbb{Q}^{3 \times 3}$ such that $P^{-1} A P=B$.
63) a) Let F be a field and let $A \in F^{n \times n}$. Show that $A \sim A^{T}$.
b) Show that there cannot be a single matrix $B \in \mathrm{GL}_{n}(F)$ such that $A^{B}=A^{T}$. (That is, the statement in a) is $\forall A \exists B: A^{B}=A^{T}$ and not $\exists B \forall A$.

