54) Let R be a PID and $A \in R^{n \times m}$. For $1 \leq k \leq \min (m, n)$, let d_{k} be the gcd of the determinants of all $k \times k$ submatrices of A. (That is we choose any k rows and any k columns and take the matrix given by these indices.) d_{k} is called the k-th determinant divisor of A.
a) Show that if r is the rank of A (as matrix over the field $\operatorname{Frac}(R))$ then $d_{1}, \ldots, d_{r} \neq 0$ but $d_{k}=0$ for $k>r$.
b) Show that d_{k} divides d_{k+1}.
55) Let R be an integral domain and $\underline{\mathbf{a}_{1}}, \ldots, \underline{\mathbf{a}_{\mathbf{n}}}, \underline{\mathbf{b}} \in R^{m}$. We consider matrices as collections of column vectors. Show that the determinant is multilinear, that is:

$$
\operatorname{det}\left(\underline{\mathbf{a}_{1}}+\lambda \underline{\mathbf{b}}, \underline{\mathbf{a}_{2}}, \ldots, \underline{\mathbf{a}_{\mathbf{n}}}\right)=\operatorname{det}\left(\underline{\mathbf{a}_{1}}, \underline{\mathbf{a}_{2}}, \ldots, \underline{\mathbf{a}_{n}}\right)+\lambda \operatorname{det}\left(\underline{\mathbf{b}}, \underline{\mathbf{a}_{2}}, \ldots, \underline{\mathbf{a}_{n}}\right)
$$

56) Let R be a PID and $A \in R^{n \times m}$ and d_{k} as in problem 54 .
a) Show that R-invertible row or column operations on A will change the value of d_{k} only by units. (Hint: The submatrices and their determinants change (even as a set), but the gcd stays the same. The only nontrivial case is that of a submatrix to which we add a row/column from outside the submatrix. Use problem 55).
b) Show that (up to multiplication by units) the k-th elementary divisor of A is $d_{1} \cdots d_{k}$.
(This shows the uniqueness of the Smith Normal Form up to associates!)
57) The GAP command ElementaryDivisorsTransformationsMat determines elementary divisors and transforming matrices for a matrix over a Euclidean ring.
(There also is SmithNormalFormIntegerMatTransforms.) Let

$$
A:=\left(\begin{array}{rrrrr}
-1717 & 206 & -196 & 574 & 4 \\
18 & -1 & 4 & -6 & 0 \\
18 & -2 & 5 & -6 & 0 \\
-5154 & 618 & -588 & 1723 & 12 \\
0 & 0 & 0 & 0 & 3
\end{array}\right) .
$$

Determine the elementary divisors of the characteristic matrix of A (i.e. of $A-x I$) and the characteristic polynomial of A.
58) Let F be a free \mathbb{Z}-module on the generators x, y, z, and $S \leq F$ be generated by

$$
\begin{gathered}
1040 x+1372 y-2804 z \\
-2602 x-3462 y+7018 z \\
-438 x-590 y+1182 z \\
1620 x+2140 y-4368 z
\end{gathered}
$$

Determine the structure of S and of F / S as \mathbb{Z} modules.

