48) Let F be a field and $U, V \leq F^{n}$. Let $A \in F^{m \times n}$ be a matrix whose rows form a basis of U, $B \in F^{k \times n}$ a matrix whose rows form a basis of V. Suppose that the RREF of the matrix

$$
\left(\begin{array}{cc}
A & A \\
B & 0
\end{array}\right) \text { is }\left(\begin{array}{cc}
X & * \\
0 & Y
\end{array}\right)
$$

with $X \in F^{a \times n}, Y \in F^{b \times n}$ (that is the block split is possibly in a different row but the column split is the same). Show that the rows of X form a basis of $\langle A, B\rangle$ and the rows of Y a basis of $A \cap B$.
49) Let F be a field, V an F-vector space and $T: V \rightarrow V$ a linear map. We set $R=F[x]$.
a) Show that V becomes an R module via $f(x) . v:=f(T)(v)$.
b) If V is finite dimensional and T is diagonalizable, what are the R-submodules of V ?
50) Let V be a vector space over a field K of countably infinite dimension with basis $e_{0}, e_{1}, e_{2}, \ldots$. Let $R=\operatorname{End}(V)$ the ring of linear transformations $V \rightarrow V$. We define $\alpha, \beta \in R$ by

$$
\alpha: e_{i} \rightarrow\left\{\begin{array}{ll}
e_{\frac{i}{2}} & i \text { even } \\
0 & \text { otherwise }
\end{array}, \quad \beta: e_{i} \rightarrow \begin{cases}e_{\frac{i-1}{2}}^{2} & i \text { odd } \\
0 & \text { otherwise }\end{cases}\right.
$$

a) Show that $\{\alpha, \beta\}$ is a basis of ${ }_{R} R$.
b) Show that $\{1\}$ is a basis of ${ }_{R} R$
51) a) Let

$$
A:=\left(\begin{array}{rrrr}
60 & -60 & 48 & -232 \\
-9 & 9 & -6 & 36 \\
-21 & 21 & -18 & 80
\end{array}\right) \in \mathbb{Z}^{3 \times 4}
$$

Determine the Smith Normal Form of A as well as transforming matrices P and Q.
b) Let $\underline{\mathbf{b}}:=(-76,15,23)^{T}$. Determine all integer solutions to the system $A \underline{\mathbf{x}}=\underline{\mathbf{b}}$.
52) Let A be a diagonal matrix with entries $d_{1}, d_{2}, \ldots d_{m}$ over a PID R. What is the Smith Normal Form of A ?
53) Let $A \in \mathbb{Z}^{m \times n}$ be a matrix and $S=P \cdot A \cdot Q$ its Smith Normal Form (which is unique). Show that the transforming matrices P and Q are not unique. (Hint: Consider for a square A a centralizing matrix B with $A=B^{-1} A B$.)

