42) Consider the parametric curve

$$
x=\frac{1-t^{2}}{1+t^{2}}, \quad y=\frac{2 t}{1+t^{2}} .
$$

Describe this curve by polynomials in x, y, and t. By eliminating t, determine a polynomial in x and y describing the curve and use this result to identify the curve.
43) Consider a (2-dimensional) robot arm as depicted.

We want to find out the angles θ_{1}, θ_{2} to which the joints have to be set to move the hand to coordinates (a, b). For simplification, assume the two arms have length $l_{1}=3, l_{2}=4$. To avoid using trigonometric functions, set $s_{i}=\sin \left(\theta_{i}\right)$, $c_{i}=\cos \left(\theta_{i}\right)(i=1,2)$. Then $s_{i}^{2}+c_{i}^{2}=1$.
Write down equations that determine a, b in terms of the variables $c_{1}, s_{1}, c_{2}, s_{2}$. (You will have to use the formulas for $\sin (\alpha+\beta)$ and $\cos (\alpha+\beta)$.)

44) Let $R=\mathbb{Q}[x, y, z]$ and $I=\left\langle x^{2}+y z-2, y^{2}+x z-3, x y+z^{2}-5\right\rangle \triangleleft R$. Show that $x+I$ is a unit in R / I and determine $(x+I)^{-1}$.
45) a) Let F be a field and $R=F\left[x_{1}, \cdots, x_{n}\right]$ and let $I_{1}=\left\langle f_{1}, \ldots, f_{k}\right\rangle \triangleleft R$ and $I_{2}=\left\langle h_{1}, \ldots, h_{r}\right\rangle \triangleleft R$ be two ideals. Let $S=F\left[x_{1}, \cdots, x_{n}, t\right]$ (considering $R \subset S$) and set

$$
J=\left\langle t \cdot f_{1}, \ldots, t \cdot f_{k},(1-t) \cdot h_{1}, \ldots,(1-t) \cdot h_{r}\right\rangle \triangleleft S .
$$

Show that $I_{1} \cap I_{2}=J \cap R$.
b) Let $f=x^{3} z^{2}+x^{2} y z^{2}-x y^{2} z^{2}-y^{3} z^{2}+x^{4}+x^{3} y-x^{2} y^{2}-x y^{3}$ and $g=x^{2} z^{4}-y^{2} z^{4}+2 x^{3} z^{2}-2 x y^{2} z^{2}+x^{4}-x^{2} y^{2}$. Compute $\langle f\rangle \cap\langle g\rangle$.
c) Compute $\operatorname{gcd}(f, g)$. (Hint: Show that $\langle f\rangle \cap\langle g\rangle=\langle\operatorname{lcm}(f, g)\rangle$.)
46) (Intended to illustrate the reason for having different monomial orderings.)

Let $I=\left\langle x^{5}+y^{4}+z^{3}-1, x^{3}+y^{2}+z^{2}-1\right\rangle$. Compute a Gröbner basis for I with respect to the lex, grlex, and grevlex orderings. Compare.
Repeat the calculations for $I=\left\langle x^{5}+y^{4}+z^{3}-1, x^{3}+y^{3}+z^{2}-1\right\rangle$ (only one exponent changed!)
47) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. A point $x \in \mathbb{R}^{n}$ is called a critical point of f, if $\frac{\partial f}{\partial x_{i}}(x)=0$. (Cf. Calculus 3.) Determine all critical points of the function

$$
f(x, y)=\left(x^{2}+y^{2}\right)^{3}-4 x^{2} y^{2}
$$

Note: this curve is the "four-leaved flower" $r=\sin (2 \theta)$ in polar coordinates. Is there a geometric interpretation of the critical points?

