Mathematics 567

Homework (due Apr 11)

$$x = \frac{1-t^2}{1+t^2}, \qquad y = \frac{2t}{1+t^2}$$

Describe this curve by polynomials in x, y, and t. By eliminating t, determine a polynomial in x and y describing the curve and use this result to identify the curve.

43) Consider a (2-dimensional) robot arm as depicted. We want to find out the angles θ_1 , θ_2 to which the joints have to be set to move the hand to coordinates (a, b). For simplification, assume the two arms have length $l_1 = 3$, $l_2 = 4$. To avoid using trigonometric functions, set $s_i = \sin(\theta_i)$, $c_i = \cos(\theta_i)$ (i = 1, 2). Then $s_i^2 + c_i^2 = 1$.

Write down equations that determine *a*, *b* in terms of the variables c_1, s_1, c_2, s_2 . (You will have to use the formulas for $sin(\alpha + \beta)$ and $cos(\alpha + \beta)$.)

44) Let $R = \mathbb{Q}[x, y, z]$ and $I = \langle x^2 + yz - 2, y^2 + xz - 3, xy + z^2 - 5 \rangle \triangleleft R$. Show that x + I is a unit in R/I and determine $(x + I)^{-1}$.

45) a) Let *F* be a field and $R = F[x_1, \dots, x_n]$ and let $I_1 = \langle f_1, \dots, f_k \rangle \triangleleft R$ and $I_2 = \langle h_1, \dots, h_r \rangle \triangleleft R$ be two ideals. Let $S = F[x_1, \dots, x_n, t]$ (considering $R \subseteq S$) and set

$$J = \langle t \cdot f_1, \ldots, t \cdot f_k, (1-t) \cdot h_1, \ldots, (1-t) \cdot h_r \rangle \triangleleft S.$$

Show that $I_1 \cap I_2 = J \cap R$. b) Let $f = x^3z^2 + x^2yz^2 - xy^2z^2 - y^3z^2 + x^4 + x^3y - x^2y^2 - xy^3$ and $g = x^2z^4 - y^2z^4 + 2x^3z^2 - 2xy^2z^2 + x^4 - x^2y^2$. Compute $\langle f \rangle \cap \langle g \rangle$. c) Compute gcd(f, g). (Hint: Show that $\langle f \rangle \cap \langle g \rangle = \langle \text{lcm}(f, g) \rangle$.)

46) (Intended to illustrate the reason for having different monomial orderings.) Let $I = \langle x^5 + y^4 + z^3 - 1, x^3 + y^2 + z^2 - 1 \rangle$. Compute a Gröbner basis for *I* with respect to the *lex*, *grlex*, and *grevlex* orderings. Compare. Repeat the calculations for $I = \langle x^5 + y^4 + z^3 - 1, x^3 + y^3 + z^2 - 1 \rangle$ (only one exponent changed!)

47) Let $f: \mathbb{R}^n \to \mathbb{R}$. A point $x \in \mathbb{R}^n$ is called a *critical point* of f, if $\frac{\partial f}{\partial x_i}(x) = 0$. (Cf. Calculus 3.) Determine all critical points of the function

$$f(x, y) = (x^2 + y^2)^3 - 4x^2y^2$$

Note: this curve is the "four-leaved flower" $r = sin(2\theta)$ in polar coordinates. Is there a geometric interpretation of the critical points?

A. Hulpke