1) Let $a=\left(\begin{array}{ll}\overline{1} & \overline{1} \\ \overline{1} & \overline{2}\end{array}\right)$ and $b=\left(\begin{array}{cc}\overline{2} & \overline{1} \\ \overline{1} & \overline{1}\end{array}\right)$, where the bar denotes residue classes in $\mathbb{Z} / 3 \mathbb{Z}$. Let $G=\langle a, b\rangle$ be the group generated by a and b.
Show that $|G|=8$ and that $G \not \equiv D_{8}$ (where D_{8} is the symmetry group of the square).
2) Let G be a group in which all elements have order 2 . Show that G is abelian.
3) Let G be a group and $U \leq G$ of index 2 or 3 . Show that there exists $N \triangleleft G$ with $[G: N] \in\{2,3\}$. (Hint: Consider the action on the cosets of U and its image in S_{3}.)
4) Let G be a group and $H, K \leq G$ with $H \leq K \leq G$.
a) Let $\left\{r_{i}\right\}$ a set of representatives of the cosets of K in G (Right Cosets: $K x$) and $\left\{s_{j}\right\}$ a set of representatives of the cosets of H in K. Show that the products $\left\{s_{j} \cdot r_{i}\right\}$ form a set of representatives for the cosets of H in G.
b) Show that if $[G: H]$ is finite, then $[G: H]=[G: K][K: H]$. (You cannot assume that any of the groups if finite and thus cannot simply use the quotient $|G| /|K|$.)
5) Let F be a field with q elements and $G=\operatorname{SL}_{2}(F)$. For $a \in F, b \in F^{*}=F-\{0\}$ let $u(a, b)=$ $\left(\begin{array}{cc}b & a \\ 0 & b^{-1}\end{array}\right) \in G$. Let $w=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right) \in G$. We consider

$$
\begin{array}{rlr}
B & =\left\{u(a, b) \mid a \in F, b \in F^{*}\right\} \quad \text { called Borel subgroup } \\
U & =\{u(a, 1) \mid a \in F\} \quad \text { called unipotent subgroup } \\
T & =\left\{u(0, b) \mid b \in K^{*}\right\} \quad \text { called a (maximal) Torus }
\end{array}
$$

a) Show that $B, U, T \leq G, U \triangleleft B, B=U T$ (i.e. every element of B can be written in the form $u \cdot t$) and $U \cap T=\langle 1\rangle$.
b) Show that every $g \in G$ either fulfills that $g \in B$ or can be written uniquely in the form $g=b \cdot w \cdot u$ with $b \in B, u \in U$. Based on this, describe a set of representatives for the cosets of B in G.
c) Determine $|G|$ based on $[G: B],[B: U]$ and $|U|$.
6) Let G be a group. For $x, y \in G$ let $[x, y]=x^{-1} y^{-1} x y$ be the commutator of x and y. (The name stems from the fact that $x y=y x$ if and only if $[x, y]=1$.)
Define the Commutator subgroup (or Derived subgroup) as

$$
G^{\prime}:=\left\langle[x, y]=x^{-1} y^{-1} x y \mid x, y \in G\right\rangle \leq G,
$$

thus every element of G^{\prime} is a product of elements of the form $\left[x_{i}, y_{i}\right]$.
a) Prove that $G^{\prime} \triangleleft G$.
b) Prove that G / G^{\prime} is abelian.
c) If $N \triangleleft G$ with G / N abelian, prove that $G^{\prime} \leq N$.

