
Mathematics 567 Introduction to GAP A. Hulpke

Some of the examples in this course will involve the computer algebra system GAP.

You are also welcome to use GAP (or any other computer algebra system) for calculations, as long

as they do not render the problem trivial. For example, if a problem asks to calculate a GCD, you

could use GAP to do the division with remainders. If a problem was to calculate a Smith normal

form, you could use GAP for gcd computations, etc.

You can download a GAP installer from: http://www.math.colostate.edu/~hulpke/CGT/

education.html.

You can start GAP with the GGAP icon on the screen or as gap on Unix.. The program will start

up and you will get a prompt/worksheet with a prompt that lets you enter commands:

>

You now can type in commands (followed by a semicolon) and GAP will return the result. If

you type a partical command name and then type TAB, GAP will give you a list of all possible

completions.

The worksheet works similarly to Maple. While you can return to previous lines and change (or

re-execute) the command there, this does not time travel and change the sequence of commands

executed so far, but simply executes this as new command.

Editing and cut/paste ought to work as usual – if not please let me know!

You can use the online help to get documentation

> ?gcd

Help: Showing ‘Reference: Gcd’

> Gcd( <R>, <r1>, <r2>, ... )[...]

(For example ?Line Editing to get from the online help a list of editing commands.)

You might want to create a transcript of your session in a text file. On the laboratory machines the

best place for this is the My Documents folder. You create the log by issuing the command

LogTo("C:/Documents and Settings/m467/My Documents/logfile.txt");

Two caveats:

• You must type forward slashes (/) even though the standard Windows convention is for

backslashes.

• You all share the same account – files with the same name will overwrite each other. A

good idea therefore is to have files include e.g. your eName to be unique, e.g. call a log file

yournamelog.txt.

You can end logging with the command

LogTo();



If you want to enter a set of commands (or even write your own code) it is convenient to write this

in a text file (.txt), for example using NotePad. (Careful with using Word, which usually creates

more complicated files!)

You can read in such a file using the Read command:

> Read("C:/Documents and Settings/m467/My Documents/myprogram.txt");

(Again careful with name clashes, if you are using the common class account!)

If you want to continue work later, you can save a workspace, which saves also the internal state

of GAP. Loading this workspace gets you back to the point where you were before. (Saving a

worksheet only saves the text of input and output without the GAP objects.)

Numbers

GAP knows integers of arbitrary length and rational numbers:

> 17 - 23;

-6

> 123456/7891011+1;

2671489/2630337

GAP knows a precedence between operators that may be overridden by parentheses and can

compare objects:

> (9 - 7) * 5 = 9 - 7 * 5;

false

> 5/3<2;

true

You can assign numbers (or more general: every GAP object) to variables, by using the assignment

operator :=. Once a variable is assigned to, you can refer to it as if it was a number. The special

variables last, last2, and last3 contain the results of the last three commands.

> a:=2^16-1;

65535

> b:=a/(2^4+1);

3855

The following commands show some useful integer calculations related to quotient and remainder:

> Int(8/3); # round down

2

> QuoInt(76,23); # integral part of quotient

3

> QuotientRemainder(76,23);

[ 3, 7 ]



> 76 mod 23; # remainder (note the blanks)

7

> 1/5 mod 7;

3

> Gcd(64,30);

2

> rep:=GcdRepresentation(64,30);

[ -7, 15 ]

> rep[1]*64+rep[2]*30;

2

> Factors(2^64-1);

[ 3, 5, 17, 257, 641, 65537, 6700417 ]

Polynomials

To create polynomials, we need to create the variable first. Note that the name we give is the

printed name (which could differ from the variable we assign it to). As GAP does not know the

real numbers we do it over the rationals

> x:=X(Rationals,"x");

x

> f:=x^7+3*x^6+x^5+3*x^3-4*x^2-4*x;

x^7+3*x^6+x^5+3*x^3-4*x^2-4*x

> g:=x^5+2*x^4-x^2-2*x;

x^5+2*x^4-x^2-2*x

> f+g;f*g;

x^7+3*x^6+2*x^5+2*x^4+3*x^3-5*x^2-6*x

x^12+5*x^11+7*x^10+x^9-2*x^8-5*x^7-14*x^6-11*x^5-2*x^4+12*x^3+8*x^2

The same operations as for integers hold for polynomials

> QuotientRemainder(f,g);

[ x^2+x-1, 3*x^4+6*x^3-3*x^2-6*x ]

> f mod g;

3*x^4+6*x^3-3*x^2-6*x

> Gcd(f,g);

x^3+x^2-2*x

> GcdRepresentation(f,g);

[ -1/3*x, 1/3*x^3+1/3*x^2-1/3*x+1 ]

> rep:=GcdRepresentation(f,g);

[ -1/3*x, 1/3*x^3+1/3*x^2-1/3*x+1 ]

> rep[1]*f+rep[2]*g;



x^3+x^2-2*x

> Factors(g);

[ x-1, x, x+2, x^2+x+1 ]

By creating further variables, we get multivariate polynomials:

> y:=X(Rationals,"y");

y

> p:=x^2-y^2;

x^2-y^2

> Factors(p);

[ x-y, x+y ]

Value can be used to evaluate polynomials. If the polynomial is univariate, the variable is assumed

to be the natural one:

> Value(f,2);

352

> Value(f,[x],[2]);

352

> Value(f,[y],[2]);

x^7+3*x^6+x^5+3*x^3-4*x^2-4*x

> Value(p,[x],[3]);

-y^2+9

> Value(p,[y],[2]);

x^2-4

> Value(p,[x,y],[3,2]);

5

> Value(p,[x,y],[y,x]);

-x^2+y^2

Lists

Objects separated by commas and enclosed in square brackets form a list.

Collections of objects are represented by such lists. Lists are also used to represent sets.

> l:=[5,3,99,17,2]; # create a list

[ 5, 3, 99, 17, 2 ]

> l[4]; # access to list entry

17

> l[3]:=22; # assignment to list entry

22

> l;

[ 5, 3, 22, 17, 2 ]



> Length(l);

5

> 3 in l; # element test

true

> 4 in l;

false

> Position(l,2);

5

> Add(l,17); # extension of list at end

> l;

[ 5, 3, 22, 17, 2, 17 ]

> s:=Set(l); # new list, sorted, duplicate free

[ 2, 3, 5, 17, 22 ]

Results that consist of several numbers are represented as list.

> DivisorsInt(96);

[ 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 96 ]

There are powerful list functions that often can save programming loops: List, Filtered, ForAll,

ForAny, First. The notation i -> xyz is a shorthand for a one parameter function.

> l:=[5,3,99,17,2];

[ 5, 3, 99, 17, 2 ]

> List(l,IsPrime);

[ true, true, false, true, true ]

> List(l,i -> i^2);

[ 25, 9, 9801, 289, 4 ]

> Filtered(l,IsPrime);

[ 5, 3, 17, 2 ]

> ForAll(l,i -> i>10);

false

> ForAny(l,i -> i>10);

true

> First(l,i -> i>10);

99

A special case of lists are ranges, indicated by double dots.

> l:=[10..100];

[ 10 .. 100 ]

> Length(l);

91



For example to solve homework problem 2b, we want to find years, for which d = 1 and e = 0.

To do so, we first solve the value for a from the defining formula d = (19a+24)mod30. We then

search for years which give this a = Ymod19 value.

> a:=(1-24)/19 mod 30;

13

> years:=Filtered([1900..2099],y->y mod 19=a);

[ 1913, 1932, 1951, 1970, 1989, 2008, 2027, 2046, 2065, 2084 ]

We now calculate for each of these years the value of e, and check when e = 0:

> Filtered(years,y-> (2*(y mod 4)+4*(y mod 7) +6+5) mod 7=0);

[ 1913, 2008 ]

Matrices

Lists are also used to form vectors and matrices:

A vector is simply a list of numbers. A list of (row) vectors is a matrix. GAP knows matrix

arithmetic.

> mat:=[[1,2,3],[5,6,7],[9,10,12]];;

> mat^5;

[ [ 289876, 342744, 416603 ], [ 766848, 906704, 1102091 ],

[ 1309817, 1548698, 1882429 ] ]

> DeterminantMat(mat);

-4

The command Display can be used to get a nicer output:

> 3*mat^2-mat;

[ [ 113, 130, 156 ], [ 289, 342, 416 ], [ 492, 584, 711 ] ]

> Display(last);

[ [ 113, 130, 156 ],

[ 289, 342, 416 ],

[ 492, 584, 711 ] ]

The command SmithNormalFormIntegerMat will compute the Smith Normal form of a matrix.

SmithNormalFormIntegerMatTransforms also computes transforming matrices:

> snf:=SmithNormalFormIntegerMatTransforms(mat);

rec( normal := [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 4 ] ],

rowC := [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ],

rowQ := [ [ 3, -13, 7 ], [ 1, -2, 1 ], [ 7, -23, 12 ] ],

colC := [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 1, 1 ] ],

colQ := [ [ 1, 0, -2 ], [ 0, 1, -1 ], [ 0, 0, 1 ] ], rank := 3,

signdet := -1, rowtrans := [ [ 3, -13, 7 ], [ 1, -2, 1 ], [ 7, -23, 12 ] ],



coltrans := [ [ 1, 0, -2 ], [ 0, 1, -1 ], [ 0, 1, 0 ] ] )

> snf.rowtrans*mat*snf.coltrans=snf.normal;

true

Modulo arithmetic

If we want to compute in the integers modulo n (what we called Zn in the lecture) without need to

always type mod we can create obhjects that immediately reduce their arithmetic modulo n:

> im:=Integers mod 6; # represent numbers for ‘‘modulo 6’’ calculations

(Integers mod 6)

To convert “ordinary” integers to residue classes, we have to multiply them with the“One” of these

residue classes, the command Int converts back to ordinary integers:

> a:=5*One(im);

ZmodnZObj( 5, 6 )

> b:=3*One(im);

ZmodnZObj( 3, 6 )

> a+b;

ZmodnZObj( 2, 6 )

> Int(last);

2

(If one wants one can get all residue classes or – for example test which are invertible).

> Elements(im);

[ ZmodnZObj(0,6),ZmodnZObj(1,6),ZmodnZObj(2,6),ZmodnZObj(3,6),

ZmodnZObj(4,6),ZmodnZObj(5,6) ]

> Filtered(last,x->IsUnit(x));

[ ZmodnZObj( 1, 6 ), ZmodnZObj( 5, 6 ) ]

> Length(last);

2

If we calculate modulo a prime the output looks a bit different1, we cannot immediately read of

what each object correspoinds to, but need to use ‘Int’ for this.

> im:=Integers mod 7;

GF(7)

> One(im);

Z(7)^0

> a:=6*One(im);

1Why? Every nonzero element is invertible, and there is a better way to represent elements internally – in effect,

GAP will avoid having to do division-with-remainder when doing arithmetic. You will learn about this in a more

advanced algebra course.



Z(7)^3

> b:=3*One(im);

Z(7)

> a+b;

Z(7)^2

> Int(a+b);

2


