1) Let G be the group of (rotational) symmetries of a regular tetrahedron. Determine its orbits on edges, and on pairs of edges. (The tetrahedron has 6 edges, thus there are $\binom{6}{2} = 15$ pairs).

2) Let Ω be the set of connected, labelled, graphs on 4 vertices. (For example $1 - 2 - 3 - 4$ is such a graph.) Determine the orbits of S_4 on Ω, acting by renumbering vertices.

3) Let $\Omega = \{0, 1, 2, 3, 4\}$ and let a act on Ω by addition of 1 modulo 5, b act on Ω by multiplication with 2 modulo 5, and $G = \langle a, b \rangle$. (Both are affine transformations, thus they lie in a group.)

a) Write down permutations for a and b acting on Ω.

b) Draw the Schreier graph for the action of G on Ω.

4) Let G be a group and $H, K \leq G$. Show that the action of G on the cosets of H is equivalent (where we choose the homomorphism $G \to G$ to be the identity) to the action of G on the cosets of K (i.e. there is a bijection ψ on the cosets such that $\psi((Hx)^g) = \psi((Hx)^s)$ if and only if H and K are conjugate in G, that is there exists $g \in G$ such that $K = H^g = g^{-1}Hg = \{g^{-1}hg \mid h \in H\}$).

5) The Figure below depicts an unfolded icosahedron with its faces labelled from 1 to 20.

a) Show that the group G of rotational symmetries of the icosahedron has order 60.

b) Show that the permutations

$$p_1 = (1, 6, 8, 4, 10)(2, 5, 17, 13, 9)(3, 7, 15, 12, 19)(11, 20, 14, 18, 16)$$

$$p_2 = (1, 13, 19, 9, 6)(2, 4, 17, 18, 11)(3, 8, 10, 12, 16)(5, 15, 14, 20, 7)$$

represent rotational symmetries of this icosahedron along different axes.

c) Show that $p_1 \notin \langle p_2 \rangle$ and $p_2 \notin \langle p_1 \rangle$.

d) [For those who had abstract algebra] Show that any group of order $\frac{n}{60}$ must have a normal 5-Sylow subgroup. (Hint: In the case of order 30, show that if there were six 5-Sylow subgroups, the 3-Sylow subgroup must be normal. Then the subgroup generated by the 3-Sylow subgroup and a 5-Sylow subgroup must have order 15, thus be normal, and thus contain all six 5-Sylow subgroups, which is impossible, since 15 is not a multiple of 6.)

Conclude that p_1 and p_2 must generate the full group of all rotational symmetries.