
Mathematics 466 Midterm (50 points) 10/9/19
Points (leave blank)
1 2 3 4 5 ∑ Name:

(clearly, please)

Honor pledge: I have not given, received, or used any unauthorized assistance.

Signature
You may use a pocket calculator that is incapable of transmitting data; it may not store user-de�ned
information. You also may bring a handwritten single page, letter size with notes. You can work on
the problems in any order you like. Show your work! All problems carry the same weight.
Justi�cations are a crucial part of a solution.

1) Let G be a group and S ≤ G a subgroup. We de�ne a subgroup

N = {g ∈ G ∣ g−1Sg = S}.

Show that N is a subgroup of G (it is called the normalizer). (Hint: You can either use the subgroup
test, or observe that N is a stabilizer under a suitable (say which) action.)
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2) Let G = Q − {0} the multiplicative group of nonzero rational numbers and

H = {(
a a − 1/a
0 1/a ) ∣ a ∈ Q, a /= 0} ≤ SL2(Q)

(You do not need to show that it is a subgroup.) Show that G is isomorphic to H.
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3) Let G = ⟨g⟩ be a cyclic group and S ≤ G.
a) Show that S ⊲ G, and that G/S is cyclic.
b) Assuming that ∣G∣ = n and ∣S∣ = k (dividing n), �nd a set of representatives for the cosets of S in
G. (Hint: First note how many cosets there are.)
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4) Consider three coins, lying in a row, heads-up. We label their
heads as 1,3,5, their tails respectively as 2,4,6. We now consider
symmetry operations that consist of turning individual coins over,
or swapping the positions of coins. �ese operations generate a
group, we describe it by permutations which come from the action
on the numbers, and get the group (generators are individual coin
�ips and swaps of adjacent coins)

G = ⟨(1, 2), (3, 4), (5, 6), (1, 3)(2, 4), (3, 5)(4, 6)⟩ ,

Let S = StabG(6) and T = StabS(4) = StabG(6) ∩ StabG(4) the subgroups of operations that �x the
right, respectively the right and middle coin. (You may assume everything up to now as given and
do not need to show any of it.)
a) What is ∣T ∣? (Hint:�e action of T can only change the le� coin.)
b) Calculate the orbit of 4 under S. Use this to calculate ∣S∣ from ∣T ∣.
c) Calculate the orbit of 6 under G. Use this to calculate ∣G∣ from ∣S∣.
d) Give an example of a permutation of S6 that is not in G. Explain why.
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5) Let G be a group and U ≤ G with [G ∶ U] = 2 and x ∈ G with x /∈ U . �en U and Ux are the
two cosets of U . We have seen in class that G acts on the cosets of U by right multiplication. (you
do not need to show any of this).
a) Let g ∈ U . Show that Ug = U and Uxg = Ux (that is g �xes both cosets).
b) Let g ∈ G but g /∈ U . Show that Ug = Ux and Uxg = U (that is g swaps the two cosets). (Hint:
Uxg = U is equivalent to Ux = Ug−1.)
�e results of a) and b) together show that the map

φ∶G → S2 = ⟨(1, 2)⟩, g ↦ {
() if g ∈ U

(1, 2) if g /∈ U ,

is a homomorphism (you do not need to show this.)
c) Show that kerφ ≤ U .
d) How large is the image of φ? Conclude that U = kerφ and thus that U ⊲ G.
(You thus have shown that a subgroup of index 2 is normal, as was claimed, but not proven, in class.)
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