Mathematics 466 Proving theorems from Geometry A. Hulpke

Suppose we describe points in the plane by their (x, y)-coordinates. We then can describe many

geometric properties by polynomial equations:

Theorem: Suppose that A = (x,, ¥,), B = (x4, ¥»), C = (x., y.) and D = (x4, y4) are points in the

plane. Then the following geometric properties are described by polynomial equations:

AB is parallel to CD: Yo = Va Va7 Je \hich implies (y, — ¥4 ) (xa — xc) = (ya — v ) (xp — X4).
Xp — X, X4 — X¢

AB L CD: (xp—x,)(x4—x) + (96 = ¥a)(ya = yc) = 0.

|AB| = [CDJ: (xp = xa)* + (yo = ¥a)* = (%4 = X)* + (ya = )™

C lies on the circle with center A though the point B: |AC| = |AB|.

— 1
C is the midpoint of AB: x, = E(xb —%4)s Ye = 3(Vb = Ya)-

C is collinear with AB: self
BD bisects 2 ABC: self

A typical theorem in geometry now sets up as prerequisites certain points (and their relation with
circles and lines) and claims (the conclusion) that this setup implies other conditions. If we label
the coordinates of the points involved as (x;, y;) , then the prerequisites are described by a set of
polynomials f; € R[xy,..., %4, Y15 .. ¥u] =t R. A conclusion similarly corresponds to a polynomials
g€eR.

The statement of the theorem thus can be translated as follows: Whenever {(x;, y;)} are points
fulfilling the prerequisites (i.e. f;(X1,...,%u Y15-..>¥n) = 0), then g(x1,..., %4, Y15. .., ¥n) = 0, that
is the conclusion holds for these points.

LetI=(fi,...,f,) < R the ideal generated by the prerequisite polynomials. Clearly any polynomial
h e I will satisfy h(xy,..., %, ¥1,-.., ¥n) = 0. However there might be other polynomials with the
same roots that lie outside I. For example consider I = (x2) < R[x], then g(x) = x ¢ I, but has the
same roots.

An important theorem (which typically would be proven in graduate classes in commutative algebra
or algebraic geometry) now shows that over C, such a power condition is all that can happen!:

Theorem (Hilbert’s Nullstellensatz): Let R = C[xy,...,x,] and I < R. If g € R such
that g(x;,...,x,) = 0ifand only if f(x,...,x,) = 0 for all f € I, then there exists an
integer m, such that g" € I.

The set {g € R | Im : g € I} is called the Radical of I.
(Caveat: Typically want real coordinates. Thus there is some extra subtlety in practice.)

There is a neat way how one can test this property, without having to try out possible m: Suppose
thatI = (fi,..., fm) < Rand let g € R. Then there exists a natural number m such that g € I if and
only if (we introduce an auxiliary variable y)

1e(fi.oos frl—yg) =T k[xs..., % ¥]

! Actually, one does not need C, but only that the field is algebraically closed




The reason is easy: If 1 € I, we can write
1= Zp(xl,...,xn,y)-f,-(xl,...,xn)+q(x1,...,x,,,y)-(l—yg)

We now set y = 1/g (formally in the fraction field) and multiply with a sufficient high power
(exponent m) of g, to clean out all g in the denominators. We obtain

g" = Zg'”-p(xl,...,xn,l/gm)-ﬁ(xl,...,xn)+gm-q(x1,...,xn,y)-(l—y/y) el

€R =0

Vice versa, if g™ € I, then

1=y"g"+(1-y"g") = y"g" +(1-yg)(1+yg+--+y"'g" ") el
Rﬁ.—/ W
elc] el

There are computational methods for testing ideal membership, using a technique called Grobner
bases.

Thales’ theorem For example, consider the theorem of THALES: Any triangle suspended under a
half-circle has a right angle.

We assume (after rotation and scaling) that A = (-1,0) and B = (1,0) and
set C = (x, y) with variable coordinates. The fact that C is on the circle
(whose origin is (0,0) and radius is 1) is specified by the polynomial

f=x*+y"-1=0 A
The right angle at C means that AC L BC. We encode this as

g=(x-(-1))+(1-x)+y(-y)=-x*-y*+1=0.

Clearly g is implied by f.

Apollonius’ theorem We want to use this approach to prove a classical geometrical theorem (it is
a special case of the “Nine point” or “Feuerbach circle” theorem):

Circle Theorem of APOLLONIUS: Suppose that
ABC is aright angled triangle with right angle at
A. The midpoints of the three sides, and the foot
of the altitude drawn from A onto BC all lie on
a circle.




To translate this theorem into equations, we choose coordinates for the points A, B, C. For simplicity
we set (translation) A = (0,0) and B = (b,0) and C = (0, ¢), where b and c are constants. (That is,
the calculation takes place in a polynomial ring not over the rationals, but over the quotient field of
Q[b, c].) Suppose that Mg = (x1,0), Mac = (0, x;) and Mpc = (x3,x4). We get the equations

i = 2x-b=0
fr = 2%-¢c=0
i = 2x3-b=0
fa = 2x4-¢=0

Next assume that H = (xs, x¢). Then AH 1 BC yields
fs =x5b—x6c=0

Because H lies on BC, we get

fe=xs5c+xsb—bc=0
To describe the circle, assume that the middle point is O = (x7, xg). The circle property then means
that |M450| = |MpcO| = |[MacO| which gives the conditions

f7 (xl—x7)2+(0—x8)2—(x3—x7)2—(x4_x8)2=0

fs = (x—x7)2+x53-x3—(x3—x,)*=0

The conclusion is that |HO| = |[M 40|, which translates to
g=(xs—x7)*+ (x6 — x3)* = (%1 — x7)* — x5 = 0.

We now want to show that there is an m, such that g" € (f},..., fs). In GAP, we first define a ring
for the two constants, and assign the constants. We also define variables over this ring.

R:=PolynomialRing(Rationals, ["b","c"]);
ind:=IndeterminatesO0fPolynomialRing(R) ;b:=ind[1];c:=ind[2];
x1:=X(R,"x1"); ... x8:=X(R,"x8");

We define the ideal generators f; as well as g:

f1:=2%x1-b;
£2:=2%x2-c;
£3:=2%x3-b;
f4:=2%xx4-c,;

£5:=x5xb-x6%*cC;

£6 :=x5*c+x6*xb-b*cC;
£f7:=(x1-x7) "2+ (0-x8) "2-(x3-x7) "2-(x4-x8) "2;
£8:=(x1-x7) "2+x872-x7"2-(x8-x2) "2;
g:=(x5-x7) "2+(x6-x8) "2- (x1-x7) "2-x8"2;



For the test whether g™ € I, we test that 1is in the ideal I = (f,..., fs,1— yg) < R[y], using a
Grobner basis for I:

order:=MonomiallLex0Ordering() ;
bas:=ReducedGroebnerBasis([f1,f2,f3,f4,£f5,£6,f7,£8,1-y*g] ,order) ;

The basis returned is (1), which means that indeed g™ € I.
If we wanted to know for which m, we can test membership in I itself, and find that already g € I

gap> bas:=ReducedGroebnerBasis([f1,f2,f3,f4,f5,f6,f7,£f8],order);

[ x8-1/4*c, x7-1/4%b, x6+(-b"2xc/(b"2+c"2)), x5+(-b*c~2/(b"2+c"2)),
x4-1/2%c, x3-1/2*%b, x2-1/2*c, x1-1/2*b ]

gap> PolynomialReducedRemainder(g,bas ,order) ;

0



