Mathematics 666

Homework (due Sep. 8)

6) a) Let K be a field and $A, B \in K^{n \times n}$ be matrices which are diagonalizable (i.e. there exists $P \in GL_n(K)$ such that $P^{-1}MP$ is diagonal). Show, that if AB = BA, then there exists a $Q \in GL_n(K)$ such that $Q^{-1}AQ$ and $Q^{-1}BQ$ are **both** diagonal.

b) Let φ be a representation of a finite abelian group *G* over an algebraically closed field *K* in characteristic 0 (e.g. $K = \mathbb{C}$). Show that all irreducible constituents of φ are 1-dimensional.

7) Let *A* be the group algebra $\mathbb{Q}S_3$ and let

$$e_{1} = \frac{1}{6} \left(1 + (2,3) + (1,2) + (1,2,3) + (1,3,2) + (1,3) \right)$$

$$e_{2} = \frac{1}{6} \left(1 - (2,3) - (1,2) + (1,2,3) + (1,3,2) - (1,3) \right)$$

$$e_{3} = \frac{1}{3} \left(2 - (1,2,3) - (1,3,2) \right)$$

a) Show that $1 = e_1 + e_2 + e_3$, and $e_i^2 = e_i$, $e_i e_j = 0$ for $1 \le i, j \le 3$, $i \ne j$. **Hint:** In GAP, you can calculate in the group algebra in the following way:

gap> A:=GroupRing(Rationals,SymmetricGroup(3));; gap> b:=BasisVectors(Basis(A)); [(1)*(), (1)*(2,3), (1)*(1,2), (1)*(1,2,3), (1)*(1,3,2), (1)*(1,3)] gap> e1:=1/6*(b[1]+b[3]+b[6]+b[2]+b[4]+b[5]);

b) Verify (by explicit calculation. Note that a basis is sufficient) that for all *i* and for all $a \in A$ we have that $ae_i = e_i a$. Your solution to parts a) and b) can be simply a transcript of GAP calculations.

c) We set $A_i = Ae_i = \{a \cdot e_i \mid a \in A\}$. Show that A_i is an *A*-module by right multiplication with elements of *A* and that $A_A = A_1 \oplus A_2 \oplus A_3$ is a decomposition of A_A as a direct sum of *A* modules.

(We will see later in the course that there always is such a decomposition, and that there is exactly one summand for each irreducible representation. The e_i are called central, orthogonal idempotents.)

8) Let
$$i = \sqrt{-1}$$
 and $G = \left(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \right)$ be the quaternion group of order 8. (You can create it in GAP as

Group([[[0, 1], [-1, 0]], [[E(4), 0], [0, -E(4)]])

for example and ask for its Elements.)

a) Construct an irreducible representation of *G* over the real numbers, acting on a 4-dimensional vectorspace $V \cong \mathbb{R}^4$. (**Hint:** Use an \mathbb{R} -basis of \mathbb{C} to get an \mathbb{R} -basis of \mathbb{C}^2 . To show that no 2-dimensional submodule exists, consider images of a nonzero vector (*a*, *b*, *c*, *d*) in this subspace under different elements of *G*, and show that they will yield a basis of at least a 3-dimensional subspace.)

b) Determine the endomorphism ring $\operatorname{End}_{\mathbb{R}G}(V)$.

(**Hint:** The elements of $\operatorname{End}_{\mathbb{R}G}(V)$ are 4×4 matrices that commute with the generators of *G*. Use this to deduce conditions on their entires. Then show that every matrix fulfilling these conditions commutes with *G*.) c) By Schur's lemma $\operatorname{End}_{\mathbb{R}G}(V)$ must be a division ring. Can you identify it?

9) Let $M \in GL_n(\mathbb{C})$. We consider M as the image of a generator in a representation of the infinite cyclic group. Let $V = \mathbb{C}^n$ be the module associated to this representation. Show that V is a cyclic module (i.e. it is generated as a module by a single vector) if and only if the characteristic polynomial of M equals the minimal polynomial of M.