Subregular J-rings of Coxeter systems as quotients of path algebras
Tianjuan Xu
University of Colorado, Boulder

The asymptotic Hecke algebra, or J-ring, of a Coxeter system is an associative algebra closely related to the Hecke algebra of the system. We study a subalgebra J_C of J which has a natural basis indexed by the rigid elements of the Coxeter group, where “rigid” means having a unique reduced word. Exploiting the rigidity property, we show that J_C can be realized as a certain quotient of the path algebra of the double quiver of the Coxeter diagram of the system. This allows us to use quiver representations to answer representation-theoretical questions about J_C, such as when J_C is semisimple, in terms of graph-theoretical properties of the Coxeter diagram.

Enumerating Anchored Permutations with Bounded Gaps
Maria Gillespie
Colorado State University

Suppose you start on the bottom stair of a staircase with n stairs and climb to the top stair, using up or down steps of no more than k stairs at a time, such that every stair is stepped on exactly once. In how many different ways can you climb the stairs?

We will show that there always exists a finite-depth homogeneous linear recurrence relation to enumerate such stair climbing patterns, which may be expressed as permutations with bounded differences of consecutive entries. We provide explicit recursions for $k = 2$ and $k = 3$, resolving a conjecture that was previously listed on OEIS (A249665). We then use techniques from spectral graph theory to give asymptotic bounds for the sequences for all k.

This is joint work with Ken G. Monks and Ken M. Monks.

Weber 223
4–6 pm, Friday, Sep 27, 2019
(Refreshments in Weber 117, 3:30–4 pm)
Colorado State University

This is a joint Denver U / UC Boulder / UC Denver / U of Wyoming / CSU seminar that meets biweekly.
Anyone interested is welcome to join us at a local restaurant for dinner after the talks.