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Structure in sumsets I
John Griesmer

Colorado School of Mines

Given two subsets A, B of an abelian group, their sumset is A+ B ∶= {a + b ∶∈ A, b ∈ B}. Their study is divided roughly
into direct theorems, which deduce properties of A+B from hypotheses on A and B, and inverse theorems, which deduce
properties of A and B from hypotheses on A and B.

A prototypical direct theorem is the Cauchy-Davenport theorem, which states that if p is prime and A, B are
nonempty subsets ofZ/pZ, then ∣A+B∣ ≥ min{∣A∣+ ∣B∣−1, p}.The corresponding inverse theorem, due to A. G. Vosper,
provides a simple classification of the pairs A, B where equality occurs.

Another classical result is the Steinhaus lemma, which says that if A, B ⊂ R both have positive Lebesgue measure,
then A+ B contains an interval.

We will survey these and other classical results, together with their proof techniques, including the basic theory of
Fourier analysis as it applies to sumsets. We will also discuss connections to other results in additive combinatorics,
such as the recent Kelley-Meka breakthrough on counting three-term arithmetic progressions in sets of integers. No
background in measure theory is required.

Structure in sumsets II
John Griesmer

Colorado School of Mines

Given two subsets A, B of an abelian group, their sumset is A+ B ∶= {a + b ∶∈ A, b ∈ B}. An inverse theorem on sumsets
derives structural results on A and B from hypotheses on A+ B. For example, if A and B are nonempty sets of integers
with ∣A+B∣ < ∣A∣+ ∣B∣, then A and B are arithmetic progressions with the same common difference, or ∣A∣ = 1 or ∣B∣ = 1.
We will survey some of the many recent results determining the structure of pairs A and B where ∣A + B∣ is “slightly
larger" than ∣A∣ + ∣B∣ (in various senses).

This will motivate the following general problem: how can one construct sets A and B where A + B lacks some
prescribed structure? For example, givenK ,N ∈ N, how can one construct a set A ⊂ (Z/2Z)N with ∣A∣ ≈ 1

22
N , where A+

A contains no subgroup of index at most K? Igor Kriz and Imre Ruzsa independently developed the same construction
of such an example, variations of which are the only knownway large subsets of finite abelian groups whose sumset lacks
some prescribed structure. One aim of this talk is to advertise the problem of either finding a fundamentally different
example, or proving that all such examples are essentially the same as Kriz and Ruzsa’s.
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This is a joint Denver U / UC Boulder / U of Wyoming / CSU seminar that meets biweekly.
Anyone interested is welcome to join us at a local restaurant for dinner after the talks.
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