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1. Motivation

Consider the following problem, which one might come across if taking a Calculus III
course:

1. Determine if the vector field F⃗ = ⟨−y, x⟩ is conservative.
In Calculus III, students are taught that one may test if a vector field is conservative by

checking if ∂M
∂y

= ∂N
∂x

. In the case of F⃗ = ⟨−y, x⟩, computing the partial derivatives, one has

∂

∂y
(−y) = −1 ̸= 1 =

∂

∂x
(x)

so by the partial derivative test, this would not be a conservative vector field.
However, if one slightly modifies the vector field by ‘normalizing’ we arrive at a problem

that would be beyond the scope of Calculus III. Consider the following problem, which one
should never come across if taking a Calculus III course:

2. Determine if the vector field below is conservative:

F⃗ =

〈
−y

x2 + y2
,

x

x2 + y2

〉
That is because this vector field passes the partial derivative test mentioned before, yet

there is no potential function f for F⃗ , i.e. a function f such that F⃗ = ∇⃗(f).
Indeed, computing the partial derivatives yields

∂

∂y

(
−y

x2 + y2

)
=
y2 − x2

x2 + y2
=

∂

∂x

(
x

x2 + y2

)
so naively applying the partial derivative test, one is led to believe that F⃗ is a conservative

vector field.
However, consider that the following fact would fail to hold:

Theorem 1.1. If F⃗ is conservative, then
∮
c
F⃗ · T⃗ ds = 0 for all loops c.

If c is a path on the circle x2 + y2 = 1 oriented clockwise looping around exactly once,
then

∮
c
F⃗ · T⃗ ds = 2π ̸= 0.

What is failing is that the partial derivative test ∂M
∂y

= ∂N
∂x

we applied doesn’t take into

account the domain on which the vector field is defined. Note that the domain of F⃗ from
problem 2 is R2 \{0}, which has singular cohomology groups H0 ∼= Z, H1 ∼= Z and H i>1 ∼= 0.
As it turns out, vector-field like objects can be leveraged to define a cohomology theory

for spaces where one can differentiate functions between the spaces. This is made precise in
defining de Rham cohomology.
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2. Background

Definition 2.1. [1] A topological n-dimensional manifold M with atlas A is called smooth
if for any charts φ1, φ2 ∈ A with φ1 : U → B1 and φ2 : V → B2 for open U, V ⊆ M (see
Figure 1), the transition map

(φ2 |U∩V ) ◦ (φ1 |U∩V )
−1 : B1 → B2

is smooth (i.e. C∞) as a map of open subsets of Rn.

Figure 1. Two overlapping charts for a manifold M .

Definition 2.2. Let (M,A) and (N,B) be smooth manifolds with p ∈ M . A continuous
map f :M → N is smooth at p if for any chart φ : U → B1 and ψ : V → B2 where f(p) ∈ V ,
φ ∈ A, and ψ ∈ B, then the map

ψ ◦ f |U∩f−1(V ) ◦(φ |U∩f−1(V ))
−1 : φ(U ∩ f−1(V )) → B2

is smooth at φ(p).
The map f is smooth if it is smooth at all points p ∈M .

Definition 2.3. If (M,A) and (N,B) are smooth manifolds, then a smooth homotopy H
between a pair of maps f, g :M → N is a map H :M ×R → N such that H is a homotopy
between f and g and H is a smooth map viewing M ×R as a product of smooth manifolds.

Definition 2.4. For (M,A) a smooth manifold with p ∈ M , consider all paths γ : R → M
such that γ(0) = p. The tangent space Tp(M) is the collection of such paths modulo the
equivalence relation that γ1 ∼ γ2 if (γ1)

′(0) = (γ2)
′(0). Note that by the linearity of the

derivative, the tangent space is a real vector space.

The tangent space Tp(M) can be viewed as an inner product space with the real dot
product, and that if M is n-dimensional, then Tp(M) ∼= Rn as vector spaces.

Definition 2.5. [3] A degree k differential form φ is a smooth assignment of a k-multilinear
map φ : (Tp(M))k → R for each point p ∈M .
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If the smooth manifoldM has local coordinates (x1, . . . , xn) at p, then a monomial k-form
φ can be written as f(x1, . . . , xn)dxi1 · · · dxik where each dxij : Tp(M) → R is a smooth linear
functional and f(x1, . . . , xn) is a smooth function f : M → R. The collection of k-forms on
M is denoted Ωk(M) which forms a vector space with 0 vector given by 0dxI , where I is a
cardinality k indexing set.

Definition 2.6. The exterior derivative of a monomial k-form ω = f(x1, . . . , xn)dxi1 · · · dxik
is

dω =
n∑

j=1

∂f

∂xj
dxjdxi1 · · · dxik

To define the exterior derivative of a general k-form, this definition is extended linearly.

Note that the exterior derivative is a map from Ωk(M) → Ωk+1(M), i.e. it sends k-forms
to k + 1 forms.

Definition 2.7. A closed form is a k-form φ with null exterior derivative, i.e. dφ = 0.

Definition 2.8. An exact form is a k-form φ such that there exists a (k− 1) form ψ where
φ = dψ.

3. The de Rham Cohomology

Theorem 3.1. For any smooth manifold M , (Ω•(M), d) forms a cochain complex.

This follows from the fact that the exterior derivative satisfies d2 = 0, i.e. d(dφ) = 0. This
is exactly the statement that exact differential forms are closed (Poincare’s Lemma).

Definition 3.2. [3] The de Rham Cohomology of a smooth manifold M is the cohomology
of the cochain complex (Ω•(M), d),

H i
dR(M) :=

ker di

Imdi−1

Definition 3.3. The induced map for smooth f :M → N by de Rham cohomology is

f i : H i
dR(M) → H i

dR(N)

given by the pullback of i-forms along f .

Definition 3.4. Let (M,A) be a pair of smooth manifolds with inclusion i : A→M . Then
the cochain complex on M relative to A is

Ω∗(M,A) := Ker(i∗)

where i∗ : Ω∗(M) → Ω∗(A) is the induced map on differential forms. Note that together
with the exterior derivative d, the Ω∗(M,A) forms a relative cochain complex. Denote
the restriction of d to the relative cochain complex as drel. Define the relative de Rham
cohomology of (M,A) to be the cohomology of (Ω∗(M,A), drel),

H i
dR(M) :=

ker direl
Imdi−1

rel
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4. Two properties from class

Theorem 4.1. [3] LetM and N be smooth manifolds with f :M → N a smooth homotopy
equivalence. Then f i : H i

dR(M) → H i
dR(N) is an isomorphism for each i.

Theorem 4.2. Let A and B be submanifolds ofM such that (M,A) and (M,B) are smooth
pairs. If A ∪B =M and ∂A ∩ ∂B = ∅, then there is a long exact sequence:

· · · → H i
dR(M) → H i

dR(A)⊕H i
dR(B) → H i

dR(A ∩B) → H i+1
dR (M) → · · ·

This long exact sequence is the Mayer-Vietoris sequence for de Rham cohomology.

5. Two properties not from class

Theorem 5.1. If M is a smooth manifold with boundary, then

H i
dR(M × S1) ∼= H i

dR(M)⊕H i−1
dR (M)

Theorem 5.2 (de Rham’s Theorem). [2] Let M be a smooth manifold. Then the de
Rham cohomology and the singular cohomology of M with real coefficients coincide, that is,
H i

dR(M) ∼= H i(M ;R).

Note that this statement provides an answer to Elie Cartan’s conjecture that the Betti
numbers of a smooth manifold could be captured by differential forms, and the de Rham
Theorem connects the smooth structure of a smooth manifold to the topology of the smooth
manifold.

6. Examples

The following computations proceed inductively rather than utilizing either of the theo-
rems mentioned above.

Proposition 6.1. H i
dR(S

n) ∼= R for i = 0, i = n and H i
dR(S

n) ∼= 0 otherwise.

Proof. We proceed inductively. Indeed, H i
dR(X ⊔Y ) = H i

dR(X)⊕H i
dR(Y ), and for M = {p}

a point, H0
dR(M) ∼= R, and H i

dR(M) ∼= 0 for i ≥ 1.
For the base case, let n = 1. For S1, we let A be S1 \ {s} where s is the south pole and B

be S1 \ {n} where n is the north pole. Then A∩B ≃ S0 and A ≃ B ≃ R0. Considering the
Mayer-Vietoris sequence in Figure 2, we have that the maps a and e are 0 and c is a matrix
of 1’s, so ker c ∼= R and Imc ∼= R. By exactness, ker b ∼= Ima ∼= 0 and Imb ∼= ker c ∼= R
making H0

dR(S
1) ∼= R. Also by exactness, ker d ∼= Imc ∼= R and Imd ∼= ker e ∼= H1

dR(S
1)

making H1
dR(S

1) ∼= R. Note that all the higher de Rham cohomology groups are trivial for
A, B, and A ∩B, hence H i

dR(S
1) ∼= 0 for i > 1.

H−1
dR(S

0) H0
dR(S

1) H0
dR(R0)⊕H0

dR(R0) H0
dR(S

0) H1
dR(S

1) H1
dR(R0)⊕H1

dR(R0)

0 H0
dR(S

1) R⊕ R R⊕ R H1
dR(S

1) 0⊕ 0

a b c d e

a b c d e

Figure 2. MV sequence for S1.

Suppose by induction that up to some fixed n, H i
dR(S

n) ∼= R for i = 0, i = n and
H i

dR(S
n) ∼= 0 otherwise.
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Now consider Sn+1 with A = Sn+1 \ {(0, 0, . . . , 0,−1)} and B = Sn+1 \ {(0, 0, . . . , 0, 1)}.
Note that again, A ≃ B ≃ R0, while A ∩B ≃ Sn. Considering the Mayer-Vietoris sequence
in Figure 3, we have that x and z are both 0, so by exactness, y is an isomorphism, and
hence H i+1(Si+1) ∼= R.

H i(R0)⊕H i(R0) H i(Si) H i+1(Si+1) H i+1(R0)⊕H i+1(R0)

0 R H i+1(Si+1) 0

x y z

x y z

Figure 3. MV sequence for Sn+1.

If i ̸= n, then the same sequence occurs, except that H i(Sj) ∼= 0 for i ̸= j, and this forces
H i+1(Sj+1) ∼= 0. □

Proposition 6.2. H i
dR(T

n) ∼= R(
n
i).

Proof. First denote by T n = (S1)n the product of n circles. When n = 0, by convention
we mean the space with one point T 0 = R0. Then considering that T n may be defined
inductively as T n−1 × S1 and applying Theorem 5.1, we have that

H i(T n) = H i(T n−1 × S1)

∼= H i(T n−1)⊕H i−1(T n−1)(1)

Using the calculation from Proposition 6.1, we have that H i(S1) ∼= R for i = 0, 1 and
H i(S1) ∼= 0 otherwise. Compare the shape of Equation 1 to the shape of Pascal’s Formula:(

n

i

)
=

(
n− 1

i

)
+

(
n− 1

i− 1

)
Hence the de Rham cohomology groups of T n form a sort of pascals triangle, where each

row has de Rham cohomology groups isomorphic to R(
n
i). This is partially demonstrated in

Table 1

H0 H1 H2 H3 H4 H5

T 0 R 0 0 0 0 0
T 1 R R 0 0 0 0
T 2 R R2 R 0 0 0
T 3 R R3 R3 R 0 0
T 4 R R4 R6 R4 R 0

Table 1. de Rham cohomology groups showing the Pascal’s triangle pattern
for the n-torus, 0 ≤ n ≤ 4.

□
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