A DESCRIPTION OF DE RHAM COHOMOLOGY
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1. MOTIVATION

Consider the following problem, which one might come across if taking a Calculus III
course: .

1. Determine if the vector field F' = (—y,x) is conservative.

In Calculus III, students are taught that one may test if a vector field is conservative by
checking if 88—]\; = %. In the case of F = (—y, x), computing the partial derivatives, one has
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so by the partial derivative test, this would not be a conservative vector field.

However, if one slightly modifies the vector field by ‘normalizing’ we arrive at a problem
that would be beyond the scope of Calculus III. Consider the following problem, which one
should never come across if taking a Calculus III course:

2. Determine if the vector field below is conservative:

- - x
F =
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That is because this vector field passes the partial derivative test mentioned before, yet
there is no potential function f for F, i.e. a function f such that F = V( f)-
Indeed, computing the partial derlvatlves yields

O( —y \_y-a®_ 0 ( «a
8y x2+y2 _x2+y2_8x x2+y2

so naively applying the partial derivative test, one is led to believe that F is a conservative
vector field.
However, consider that the following fact would fail to hold:

Theorem 1.1. If F is conservative, then fc F.Tds =0 for all loops c.

If ¢ is a path on the circle 22 + y? = 1 oriented clockwise looping around exactly once,
then ¢ F'-Tds =2m # 0.

What is failing is that the partial derivative test 88—]\; = oy

oz
account the domain on which the vector field is defined. Note that the domain of F from
problem 2 is R?\ {0}, which has singular cohomology groups H® = Z, H' = 7 and H*>! = (.

As it turns out, vector-field like objects can be leveraged to define a cohomology theory
for spaces where one can differentiate functions between the spaces. This is made precise in
defining de Rham cohomology.
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2. BACKGROUND

Definition 2.1. [1] A topological n-dimensional manifold M with atlas A is called smooth
if for any charts 1,2 € A with ¢ : U — By and ¢y : V' — By for open U,V C M (see
Figure , the transition map

(w2 luav) © (1 luav) ™" - Bi = Ba
is smooth (i.e. C') as a map of open subsets of R".

" v

FicURE 1. Two overlapping charts for a manifold M.

Definition 2.2. Let (M, A) and (N, B) be smooth manifolds with p € M. A continuous
map f : M — N is smooth at p if for any chart ¢ : U — By and ¢ : V. — By where f(p) € V,
p € A, and ¢ € B, then the map

bo [ lunsrvy ol lungran) s U N fTHV)) = By
is smooth at ¢(p).
The map f is smooth if it is smooth at all points p € M.

Definition 2.3. If (M, A) and (N, B) are smooth manifolds, then a smooth homotopy H
between a pair of maps f,g: M — N isamap H : M x R — N such that H is a homotopy
between f and g and H is a smooth map viewing M x R as a product of smooth manifolds.

Definition 2.4. For (M, A) a smooth manifold with p € M, consider all paths v : R — M
such that 7(0) = p. The tangent space T,(M) is the collection of such paths modulo the
equivalence relation that v; ~ 7 if (71)(0) = (72)'(0). Note that by the linearity of the
derivative, the tangent space is a real vector space.

The tangent space T,(M) can be viewed as an inner product space with the real dot
product, and that if M is n-dimensional, then 7),(M) = R" as vector spaces.

Definition 2.5. [3] A degree k differential form ¢ is a smooth assignment of a k-multilinear

map ¢ : (T,(M))* — R for each point p € M.
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If the smooth manifold M has local coordinates (z1, ..., z,) at p, then a monomial k-form
¢ can be written as f(x1,...,2,)dx;, - - - dx;, where each dx;; : T,(M) — R is a smooth linear
functional and f(x1,...,z,) is a smooth function f : M — R. The collection of k-forms on
M is denoted QF(M) which forms a vector space with 0 vector given by Odzr, where [ is a
cardinality k£ indexing set.

Definition 2.6. The exterior derivative of a monomial k-form w = f(zy,...,x,)dz;, - - dx;,
is
"9
dw = Z %d(lﬁ]dl}l tee dl’lk
j=1 "7

To define the exterior derivative of a general k-form, this definition is extended linearly.

Note that the exterior derivative is a map from Q*(M) — QF1(M), i.e. it sends k-forms
to k + 1 forms.

Definition 2.7. A closed form is a k-form ¢ with null exterior derivative, i.e. dp = 0.

Definition 2.8. An exact form is a k-form ¢ such that there exists a (k — 1) form ¢ where
© =di.

3. THE DE RHAM COHOMOLOGY

Theorem 3.1. For any smooth manifold M, (2°(M),d) forms a cochain complex.

This follows from the fact that the exterior derivative satisfies d*> = 0, i.e. d(dyp) = 0. This
is exactly the statement that exact differential forms are closed (Poincare’s Lemma).

Definition 3.2. [3] The de Rham Cohomology of a smooth manifold M is the cohomology
of the cochain complex (2°(M),d),

; ker d’
Hig (M) = TmdiT

Definition 3.3. The induced map for smooth f: M — N by de Rham cohomology is
f Hyg (M) — Hig(N)
given by the pullback of i-forms along f.

Definition 3.4. Let (M, A) be a pair of smooth manifolds with inclusion i : A — M. Then
the cochain complex on M relative to A is

QO (M, A) = Ker(i)

where i* : Q*(M) — Q*(A) is the induced map on differential forms. Note that together
with the exterior derivative d, the Q*(M, A) forms a relative cochain complex. Denote
the restriction of d to the relative cochain complex as d,.. Define the relative de Rham
cohomology of (M, A) to be the cohomology of (2*(M, A), d.e),

: ker d’,
Hig (M) = m
rel
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4. TWO PROPERTIES FROM CLASS

Theorem 4.1. [3] Let M and N be smooth manifolds with f : M — N a smooth homotopy
equivalence. Then f*: Hizr(M) — H'z(N) is an isomorphism for each i.

Theorem 4.2. Let A and B be submanifolds of M such that (M, A) and (M, B) are smooth
pairs. If AUB = M and 0ANJB = (), then there is a long exact sequence:

g HcilR(M) - H(iiR(A) D HciiR(B) - HéR(A N B) — Héﬁl(M) —

This long exact sequence is the Mayer-Vietoris sequence for de Rham cohomology.

5. TwWO PROPERTIES NOT FROM CLASS

Theorem 5.1. If M is a smooth manifold with boundary, then
Hip (M x S') = Hyp (M) @ Hyg' (M)

Theorem 5.2 (de Rham’s Theorem). [2] Let M be a smooth manifold. Then the de
Rham cohomology and the singular cohomology of M with real coefficients coincide, that is,

Hiy (M) = Hi(M;R).

Note that this statement provides an answer to Elie Cartan’s conjecture that the Betti
numbers of a smooth manifold could be captured by differential forms, and the de Rham
Theorem connects the smooth structure of a smooth manifold to the topology of the smooth
manifold.

6. EXAMPLES

The following computations proceed inductively rather than utilizing either of the theo-
rems mentioned above.

Proposition 6.1. Hiz(S") 2R for i =0, i = n and Hz(S™) = 0 otherwise.

Proof. We proceed inductively. Indeed, Hig (X UY) = Hig(X) ® Hiz(Y), and for M = {p}
a point, Hig(M) = R, and Hiz(M) =0 for i > 1.

For the base case, let n = 1. For S', we let A be S'\ {s} where s is the south pole and B
be S\ {n} where n is the north pole. Then AN B ~ SY and A ~ B ~ R, Considering the
Mayer-Vietoris sequence in Figure [2] we have that the maps a and e are 0 and ¢ is a matrix
of 1’s, so kerc & R and Imc = R. By exactness, kerb = Ima = 0 and Imb = kerc = R
making H3z(S') = R. Also by exactness, kerd = Imc 2 R and Imd = kere = Hiy(S")
making H}g(S') = R. Note that all the higher de Rham cohomology groups are trivial for
A, B, and AN B, hence Hix(S") =20 for i > 1.

Hd}i(SO) —*— Hgr(S") — Hir(R%) @ HiR(R?) —— H(S°) —4 Hig(S") —— Hir(R%) @ Hiz(R°)

0 —%— H%R(SYY —>—= RaR ¢ ROR —L— HI(S") ——— 050
FIGURE 2. MV sequence for S*.
Suppose by induction that up to some fixed n, Hiz(S") = R for i = 0, i = n and

H!x(S™) = 0 otherwise.
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Now consider S™™ with A = S"*1\ {(0,0,...,0,—1)} and B = S"*'\ {(0,0,...,0,1)}.
Note that again, A ~ B ~ R° while AN B ~ S". Considering the Mayer-Vietoris sequence

in Figure [3| we have that x and z are both 0, so by exactness, y is an isomorphism, and
hence H"(S"T!) > R.

HzGRO) o) HZ(RO) z Hz(Sz) Y Hi—i—l(si—f—l) z Hi—i—l (RO) o) Hi—i—l (RO)

0 2 » R — 21— Hi+1(GiH) 2 0

~

FIGURE 3. MV sequence for "+,

If i # n, then the same sequence occurs, except that H(S7) 2 0 for i # j, and this forces
Hi+(S7+1) 2 0, 0
Proposition 6.2. Hip(T") = R(%).

Proof. First denote by T™ = (S')" the product of n circles. When n = 0, by convention

we mean the space with one point 7° = R?. Then considering that 7" may be defined
inductively as 7" ! x S and applying Theorem , we have that

HY(T™) = H(T" ' x SY)
(1) = H(T" ) @ H' (T

Using the calculation from Proposition , we have that H(S') 2 R for ¢ = 0,1 and
H(S') = 0 otherwise. Compare the shape of Equation [I| to the shape of Pascal’s Formula:

(n) (n i 1) (n } 1)

) = . + 1.

7 ) 1—1

Hence the de Rham cohomology groups of T™ form a sort of pascals triangle, where each

row has de Rham cohomology groups isomorphic to R(Y). This is partially demonstrated in
Table 1]

H° H' H?> H® H* H°
T°l R 0 0 0 0 0
T"N'R R 0 0 0 O
Tl R R? R 0 0 O
TR R R R 0 0
TR R* R® R* R 0
TABLE 1. de Rham cohomology groups showing the Pascal’s triangle pattern
for the n-torus, 0 < n < 4.
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