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But mathematics is the sister, as well as the servant, of the arts

and is touched by the same madness and genius.

- Marston Morse

Abstract. This paper carefully examines two important fundamental results about Morse functions on compact manifolds. The first

result heavily restricts what Morse functions look like around a critical point, and allows one to instantly recognize certain smooth

functions as not being Morse. The second result, somewhat contrary to the first result, shows that all smooth functions are arbitrarily

close to some Morse function. Together, this means that although Morse functions are a heavily restricted class of functions, they are

relevant to considering any smooth function on a compact manifold. These results form the foundation of Morse theory for compact

manifolds of general dimension. We summarize the proofs from [Mat02] of these results and fill in some of the small gaps in the

lemmas and supporting definitions.
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1. TheMorse Lemma

In this section we state the Morse Lemma, sketching the proof and examining some explicit examples. We begin with an

m-dimensional version of the Fundamental Theorem of Calculus, used in the proof of the Morse Lemma in [Mat02].

Lemma 1.1 (Fundamental Theorem of Calculus). Suppose f : Rn → R has partial derivatives in all n coordinates and

f (0, . . . , 0) = 0. Then

f (x1, . . . , xn) =
n∑

i=1

xi

∫ 1

0

∂ f
∂xi

(tx1, . . . , txn)dt
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Proof. Indeed, by the 1-dimensional Fundamental Theorem of Calculus,

f (x1, . . . , xn) = f (tx1, . . . , txn)
∣∣∣1
t=0

=

∫ 1

0

d f
dt

(tx1, . . . , txn)dt

=

∫ 1

0

n∑
i=1

xi
∂ f
∂xi

(tx1, . . . , txn)dt

=

n∑
i=1

xi

∫ 1

0

∂ f
∂xi

(tx1, . . . , txn)dt

□

In fact, the following is also true using gi(t) where gi(0) = 0, gi(1) = xi, and gi(t) is differentiable, so that

f (x1, . . . , xn) =
∫ 1

0

d f
dt

(g1(t), . . . , gn(t))dt

=

n∑
i=1

∫ 1

0

(
∂gi

∂t
(t)

) (
∂ f
∂xi

(g1(t), . . . , gn(t))
)

dt

Then Lemma 1.1 follows from using gi(t) = xit.

The following lemma is used in the inductive step at the end of the proof of Theorem 1.3.

Lemma 1.2. For Ai j ∈ G with (G,+) some abelian group,

(♭)
n∑

i, j=1

Ai j = A11 +

n∑
j=2

A1 j +

n∑
i=2

Ai1 +

n∑
i, j=2

Ai j

Proof. Let

A =



A11 A12 · · · A1n

A21 A22
...

...
. . .

...

An1 · · · · · · Ann


Then (♭) is equivalent to the statement that summing up all entries in A is the same as adding A11, the sum of the entries

of the column vector [Ai1 : 2 ≤ i ≤ n], the entries of the row vector [A1 j : 2 ≤ j ≤ n], and the entries of the matrix

[Ai j : 2 ≤ i, j ≤ n]. □

Now, we state the Morse Lemma and sketch the proof seen in [Mat02].

Theorem 1.3 (Morse Lemma). Let f : M → R be a smooth function with non-degenerate critical point p0. Then one may

choose a local coordinate system (x1, x2, . . . , xn) about p0 such that f , when represented using these local coordinates, has

the form

(♠) f = −X2
1 − · · · − X2

λ + X2
λ+1 + · · · + X2

n + c

where λ is the index of f at p0.
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Proof. Choose local coordinates (x1, . . . , xn) at the critical point p0 such that p0 corresponds to the origin (0, . . . , 0). Without

loss of generality, f (p0) = 0 since one may consider f − f (p0) instead of f . Therefore, f (0, . . . , 0) = 0 and we may apply

Lemma 1.1 so that

(♣) f (x1, . . . , xn) =
n∑

i=1

xi

∫ 1

0

∂ f
∂xi

(tx1, . . . , txn)dt.

Let gi(x1, . . . , xn) =
∫ 1

0
∂ f
∂xi

(tx1, . . . , txn)dt, defined in a neighborhood of the origin. Then gi(0, . . . , 0) = 0 for all i because p0

is a critical point of f . So we may apply Lemma 1.1 again to each gi so that

(♢) gi(x1, . . . , xn) =
n∑

j=1

x j

∫ 1

0

∂gi

∂x j
(tx1, . . . , txn)dt.

Similarly, we let Hi j(x1, . . . , xn) =
∫ 1

0
∂gi
∂x j

(tx1, . . . , txn)dt defined in a neighborhood of the origin. To see that Hi j = H ji,

observe1 that

∂gi

∂x j
=
∂

∂x j

∫ 1

0

∂ f
∂xi

(x1t, . . . , xnt)dt

=

∫ 1

0

∂2 f
∂x j∂xi

(x1t, . . . , xnt)dt

=

∫ 1

0

∂2 f
∂xi∂x j

(x1t, . . . , xnt)dt

=
∂

∂xi

∫ 1

0

∂ f
∂x j

(x1t, . . . , xnt)dt

=
∂g j

∂xi

Then integrating these as in Lemma 1.1, we see2 that Hi j = H ji. Combining equations (♣) and (♢) yields

(♡) f (x1, . . . , xn) =
n∑

i, j=1

xix jHi j(x1, . . . , xn)

Equation (♠) is called the ‘Morse form’ (or standard form) of f , which is a special type of quadratic form for f . The goal

at this point is to rewrite the representation given in (♡) in standard form. This is accomplished inductively on the number of

terms in (♡).

Recall that p0 is a non-degenerate critical point of f . This means that det(H f (p0)) , 0 i.e. the Hessian matrix is non-

singular, so after a suitable linear change of local coordinates, this implies that ∂
2 f
∂x2

1
(0, . . . , 0) , 0. Note that by differentiating

(♡), one sees that ∂
2 f
∂x2

1
(0, . . . , 0) = 2H11(0, . . . , 0) so H11(0, . . . , 0) , 0. Moreover, H11 is continuous in a neighborhood of the

origin so H11 is not zero on a neighborhood of the origin.

Now one can define a new system of coordinates, (X1, x2, . . . , xn) where

X1 =
√
|H11|

x1 +

n∑
i=2

xi
H1i

H11


1Being able to differentiate under the integral sign here follows from the fact that f is twice differentiable, hence gi is continuous, so we are allowed to

use the Leibniz Integral Rule.
2The text [Mat02] uses hi j instead and defines Hi j = (hi j + h ji)/2 to get Hi j = H ji without much extra work, but I think it’s more beneficial to understand

why Hi j = H ji as we have defined it.
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which means

X2
1 = |H11|

x1 +

n∑
i=2

xi
H1i

H11

2

=

 H11x2
1 + 2

∑n
i=2 x1xiH1i + (

∑n
i=2 xiH1i)2/H11 (H11 > 0)

−H11x2
1 − 2

∑n
i=2 x1xiH1i − (

∑n
i=2 xiH1i)2/H11 (H11 < 0)

Alternatively,

H11x2
1 + 2

n∑
i=2

x1xiH1i +

 n∑
i=2

xiH1i

2

/H11 =

 X2
1 (H11 > 0)

−X2
1 (H11 < 0)

Observe that

(℧) ±X2
1 +

n∑
i, j=2

xix jHi j − (
n∑

i=2

xiH1i)2/H11 = H11x2
1 +

n∑
i=2

x1xiH1i +

n∑
i=2

xix1Hi1 +

n∑
i, j=2

xix jHi j

By Lemma 1.2 above with Ai j = xix jHi j, the right hand side of (℧) is equal to (♡), so that

f (X1, x2, . . . , xn) = ±X2
1 +

n∑
i, j=2

xix jHi j − (
n∑

i=2

xiH1i)2/H11

depending if H11 is positive or negative. The remaining sum f − (±X2
1) is a function with one fewer term which can be

rewritten using the same process. Hence proceeding by induction, such an f can always be represented in Morse form. □

Corollary 1.4. Non-degenerate critical points are isolated.

If a non-degenerate critical point could be not isolated on the manifold M, say critical point p0, then every neighborhood

of p0 would contain a critical point. But then there would be no coordinate neighborhood of p0 where f could be represented

as in (♠), because this only has one critical point. In other words, (♠) forces critical points to be ‘spread out’ in some sense.

Corollary 1.5. A Morse function on a compact manifold admits only finitely many critical points.

Suppose M is compact, and has a Morse function f with infinitely many critical points pi. Then there exists a compact

subset K of a coordinate neighborhood U with K containing infinitely many of the pi. Since K is homeomorphic to a compact

subset of Rn, there exists a convergent subsequence of the infinitely many pi in K. However, the limit of this subsequence

would not be isolated, which violates Corollary 1.4.

Remark 1.6. Theorem 1.3 only applies to non-degenerate critical points, because among other things, one needs the index of

the critical point, which might not be stable under small pertubations if the critical point is degenerate.
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2. Morse Approximations of Smooth Functions

In this section, we summarize the fact that loosely, Morse functions are abundant in the space of smooth functions f : M →

R.

Lemma 2.1 (Linear Morsification). For U ⊆ Rm open, f : U → R smooth, there exist a1, . . . , am ∈ R such that f (x1, . . . , xm)−

(a1x1 + · · · + amxm) is Morse.

This lemma intuitively states that one can always subtract a suitably ‘flat’ hyperplane from the function to eliminate all

degenerate critical points of f . Note that in the process, one may also gain non-degenerate critical points.

Definition 2.2. Suppose f , g : M → R, U ⊆ M a coordinate neighborhood of M with coordinates (x1, . . . , xn), and K a

compact subset of U. Given ε > 0, f is said to be a (C2, ε) approximation of g in K if the following inequalities hold for all

p ∈ K:


| f (p) − g(p)| < ε (C0 closeness)

|
∂ f
∂xi
−
∂g
∂xi
| < ε i = 1, . . . , n (C1 closeness)

|
∂2 f
∂xi∂x j

−
∂2g
∂xi∂x j
| < ε i, j = 1, . . . , n (C2 closeness)

Loosely speaking, this definition of (C2, ε) is saying that f and g are C2 close whenever their function values, first partials,

and second partials are close.

To define a (C2, ε) approximation on a compact manifold M, pick compact subsets Ki of M such that M = ∪iKi, and

associate to this covering by compact sets the covering by coordinate neighborhoods M = ∪iUi where Ki ⊆ Ui. We know

such a covering by compact subsets exists by the following: Fix compact manifold M. Consider all possible coordinate

neighborhoods U of M, and for each U, consider all possible m-disks D. Note that since the U range over all points in M, the

interiors int(D), which are open, forms an open cover of M. Hence there is finite subcover int(Di) of M. Note that Di, which

are compact, must then also cover M. So M can be covered by finitely many compact subsets Di contained inside finitely

many coordinate neighborhoods Ui.

Definition 2.3. Given M = ∪iKi a compact covering, a function f : M → R is a (C2, ε)-approximation of function g : M → R

if f is a (C2, ε) approximation of g on Ki for each i = 1, . . . , n.

The next lemma loosely establishes that non-degeneracy of critical points is preserved when moving from a function to a

(C2, ε) approximation.

Lemma 2.4. Let C be a compact subset of an m-dimensional manifold M. Suppose that g : M → R has no degenerate critical

point in C. Then for a sufficiently small ε > 0, any (C2, ε)-approximation f of g has no degenerate critical point in C.

Proof. Fix coordinate neighborhood Ui with coordinates (x1, . . . , xn) and associated compact Ki. Also fix a smooth function

g : M → R. Denote

Hg =

[
∂2g
∂xi∂x j

]
the Hessian of g with respect to these coordinates.

Indeed, there are no non-degenerate critical points of g in C ∩ Ki iff the condition

(♯)
∣∣∣∣∣ ∂g∂x1

∣∣∣∣∣ + · · · + ∣∣∣∣∣ ∂g∂xn

∣∣∣∣∣ +
∣∣∣∣∣∣det

(
∂2g
∂xi∂x j

)∣∣∣∣∣∣ > 0

holds on C ∩ Ki. This can be seen by the following argument.

Suppose p0 is a critical point of g. Then evaluated at p0, each first derivative ∂g
∂xi
= 0. Then p0 by definition is non-

degenerate iff det
(
∂2g
∂xi∂x j

)
, 0 iff

∣∣∣∣∣det
(
∂2g
∂xi∂x j

)∣∣∣∣∣ > 0.
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Now suppose p0 is not a critical point of g. Then ∂g
∂xi
, 0 at p0 for some index i, and so condition (♯) is satisfied, even if

det
(
∂2g
∂xi∂x j

)
= 0.

Next observe that a version of condition (♯) is also true of any (C2, ε) approximation f of g for ε small enough. To see this,

suppose g has no non-degenerate critical points in C ∩ Ki. Then condition (♯) holds for g. Since det() is a continuous function

of matrices in the sense that two matrices A and B are close if pairwise, their entries are at most ε apart, then there exists ε

such that3 ∣∣∣∣∣∣ ∂2 f
∂xi∂x j

(p0) −
∂2g
∂xi∂x j

(p0)

∣∣∣∣∣∣ < ε
implies that ∣∣∣det(H f (p0)) − det(Hg(p0))

∣∣∣ < | det(Hg(p0))|

for all p0 in C ∩ Ki, and f some (C2, ε) approximation of g with ε given above.

This forces H f (p0) , 0 so any critical point of f is non-degenerate on C ∩ Ki. Note that if p0 is not a critical point of f ,

even if it is a critical point of g, it doesn’t matter the values of the second partials of f at p0. Thus we have shown that for any

(C2, ε) approximation f of g, f also has no degenerate critical points on C ∩ Ki, or equivalently, (♯) is true for f . Repeating

this process for all Ki, i = 1, . . . , n, yields n values for ε, so pick the smallest to yield the intended result. □

Lemma 2.5 (Continuous Functions Send Compacts to Compacts). If f : K → R is continuous on K compact, then f (K) is

compact as well.

Proof. Let C = f (K). Then C has a (possibly infinite) open covering C = ∪iUi. Since f is continuous, f −1(Ui) is open in K.

Since f is onto C its image, every point in C comes from a point in K, so the preimage of the open covering is a covering of

K, i.e. K = ∪i f −1(Ui). Then since K is compact, there are finitely many Ui such that K = ∪n
i=1 f −1(Ui). Then C is covered by

finitely many open sets, C = ∪n
i=1 f ( f −1(Ui)) = ∪n

i=1Ui. □

In particular, f achieves a maximum and minimum value. So, if f is smooth, then each partial derivative of each order also

achieves maximum and minimum values, and hence are each bounded.

Lemma 2.6 (Existence of Step Functions). For subsets of a manifold K ⊂ V ⊂ L ⊂ U, where K and L are compact, V is

open, and U is a coordinate neighborhood (i.e. open), then there exists a smooth function h : U → R where

(i) 0 ≤ h ≤ 1

(ii) h(V) = 1

(iii) h(U − L) = 0

Theorem 2.7 (Existence of Morse Functions). For M a closed m-manifold, g : M → R a smooth function defined on M, there

exists a Morse function f : M → R where f is a (C2, ε)-approximation of g.

Proof. Choose a covering of M by compact sets Kl each contained in coordinate neighborhood Ul, i.e.

M = K1 ∪ · · · ∪ Kn

= U1 ∪ · · · ∪ Un

The proof inductively constructs functions fl such that fl has no degenerate critical points in Cl B K1 ∪ · · · ∪ Kl. Take

g : M → R smooth as f0, and set C0 = ∅. As the inductive hypothesis, suppose we have fl−1 : M → R with no degenerate

critical points in Cl−1.

We proceed by looking at Ul with coordinates (x1, . . . , xm). By Lemma 2.1, there exist a1, . . . , an small enough such that

(♮) fl−1(x1, . . . , xn) − (a1x1 + · · · + amxm)

3Note that this first inequality is equivalent to saying that the Hessian matrices are close in the sense above.
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is Morse on Ul. Moreover, applying Lemma 2.6 to Kl ⊆ Ul, one gets a smooth step function hl : Ul → R. Let Ll be the

compact subset between Kl and Ul as in Lemma 2.6. Then define

fl =

 fl−1(x1, . . . , xm) − (a1x1 + · · · + amxm)hl(x1, . . . , xm) (in Ul)

fl−1(x1, . . . , xm) (outside Ll)

which is well defined, because hl = 0 in Ul − Ll. Moreover, function (♮) and fl−1 agree on some open neighborhood

containing the compact Kl, since hl = 1 in Kl. Thus since (♮) has no degenerate critical points on Kl, fl also has no degenerate

critical points on Kl, and is a smooth function on Ul.

Now we wish to determine constraints on the ai so that fl is a (C2, ε) approximation of fl−1. First restricting p = (x1, . . . , xm)

to Ul, we apply Definition 2.2 to obtain the following:

( )


| fl−1(p) − fl(p)| = |(a1x1 + · · · + amxm)|hl(p)∣∣∣∣ ∂ fl−1
∂xi
−
∂ fl
∂xi

∣∣∣∣ = |aihl(p) + (a1x1 + · · · + xmxm) ∂hl
∂xi

(p)|, i = 1, 2, . . . ,m∣∣∣∣ ∂2 fl−1
∂xi∂x j

−
∂2 fl
∂xi∂x j

∣∣∣∣ = |ai
∂hl(p)
∂x j
+ a j

∂hl(p)
∂xi
+ (a1x1 + · · · + xmxm) ∂

2hl
∂xi∂x j

(p)|, i, j = 1, 2, . . . ,m

So, by Lemma 2.5, the partial derivatives of hl are all bounded, so one can choose the ai small enough to make the right

hand side of ( ) arbitrarily small. This means fl can be made a (C2, ε) approximation of fl−1 in the compact set Kl.

Now to constrain the ai to get a (C2, ε) approximation of fl−1 in the other compact sets K j, consider the coordinate neigh-

borhood U j containing K j with coordinates (y1, . . . , ym). Recall that outside Ll, fl = fl−1 so we should restrict our attention

to K j ∩ Ll ⊆ U j ∩ Ul. We can rewrite ( ) using the appropriate coordinate transformation from (x1, . . . , xm) to (y1, . . . , ym).

Furthermore, the components of the Jacobian of this coordinate transformation are each continuous and hence are bounded,

so we may again choose the ai small enough to make the right hand side of the transformed version of ( ) arbitrarily small.

Repeating this process for each K j means we can define fl as a (C2, ε) approximation on M for any value of ε by taking the

smallest of each ai for each K j.

Moreover, since fl−1 has no degenerate critical points on Cl−1, one can pick ε small enough such that fl also has no

degenerate critical points on Cl−1 by Lemma 2.4. Lastly, since fl was constructed to not have degenerate critical points on Kl,

fl has no degenerate critical points on Cl = Cl−1 ∪ Kl. Proceeding by induction, one obtains f = fk, the (C2, ε) approximation

of g with no degenerate critical points on M. □
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