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ABSTRACT

GENERALIZED PERSISTENCE FOR DISCRETE DYNAMICAL SYSTEMS

We introduce a novel method for extracting persistent topological descriptions of discrete dy-
namical systems from finite samples in the form of generalized persistence diagrams. These persis-
tence diagrams are decorated with eigenvalues of linear maps associated to a certain local system
called the persistent local system. We also prove the stability of our method and provide an exam-

ple of recovering the induced map on homology from a finite sample.
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Chapter 1

Introduction

Given a discrete dynamical system, i.e., a metric space ()M, d) together with a continuous self-
map ¢ : M — M, one would like to learn the induced map on homology H,(y) : He(M) —
H,(M) using only information from a finite sample X C M.

One way to extract this information would be to try and apply classical persistent homology.

However, there are two problems with this approach:

1. H.(p) is an endomorphism of vector spaces, so we could analyze a persistence module of
endomorphisms of vector spaces. However, classical persistence is only deals with persis-

tence modules of vector spaces.

2. Restricting the map ¢ to X, yields maps ¢, : X, — X, but these are generally not simpli-
cial. If the ¢, were simplicial, then H,(,) would yield a persistence module of endomor-

phisms. Then we could analyze this persistence module using generalized persistence.

1.1 Owur work

Given a finite sample X C M of a discrete dynamical system (M, d, @), we create a filtration
of Vietoris-Rips complexes { X, } (see Definition . From each VR-complex, there is a nat-
ural space with a map to the circle which captures how simplices move in the dynamical system
(Section[2). Using this map to the circle, we extract an endomorphism on degree d homology with
C coefficients (Section [3). Repeating this construction for each VR-complex in the filtration { X, }
yields a collection of endomorphisms on degree d homology which can be analyzed using gener-
alized persistence (Sections [ and [5). Lastly, we show this pipeline is stable and give an example

where the induced map is recovered (Section [6).



1.2 Related Literature

Persistence has been applied to structural questions about continuous dynamical systems such
as the detection of bifurcations in continuous dynamical systems [1H3]. Some authors have also
studied classical topological invariants of time series using time delay embeddings [4,5]]. Other
authors have analyzed the shape of time series for a dynamical system using persistent homology
[6-8]. The problem we are interested in is different because we will extract endomorphisms on
degree d homology in addition to the degree d homology H, (M) for a discrete dynamical system.

Edelsbrunner et. al. describe a method for extracting the eigenvalues of the induced map on
homology H,(p) : He(M) — H(M) from a finite sample X C M [9]. To accomplish this,
they introduce the concept of a fower of eigenspaces of a pair of maps and develop a persistence
approach to extract persistence diagrams from these. From the finite sample X C M, they create
a filtration of VR-complexes { X, } and restrict to a filtration of subcomplexes A, C X, such
that ¢ induces simplicial maps ¢, : A, — A,. Applying homology to these filtrations yields two
towers of vector spaces. Fixing an eigenvalue, they then compute a tower of eigenspaces from each
pair of linear maps from the pair of towers of vector spaces. Lastly, they compute the associated
persistence diagram, which allows them to approximate the eigenvalues of the induced map on

homology. Note the method described by Edelsbrunner et. al. uses the same input as our method.



Chapter 2

The Adjunction Space of a Correspondence

2.1 The Self-Correspondence of Cell Complexes

In this section, we construct a self-correspondence for a simplicial complex which we will use
to track homological features that survive application of the dynamical system map. In order to
accomplish this, we need our self-correspondence to be a relatively nice space so that the pro-
cess is computationally tractable. We begin by defining the notion of a cell complex, which is a
combinatorial description of certain topological spaces that can be built up from closed Euclidean

n-disks.

Definition 2.1.1. A cell complex is a CW complex, X, where each closed cell of X is homeomor-

phic to a closed Euclidean n-disk.

Given a cell complex X, there is a face poset F (.X') consisting of the set of closed cells together

with face relation < given by containment [ [10]].

Definition 2.1.2. Let X be a cell complex and {A,} be a collection of closed cells of X. Then

define the closure of { A, }, denoted { A, }, whose face poset is
F ({Aa}) —{oe F(X):09A)

Note that in the definition of above, the closure { A, } is a subcomplex of X.

Definition 2.1.3. Let X and Y be cell complexes. The n-skeleton X™ of X is the subcomplex of X
containing cells of dimension at most n. A function f : X — Y is called cellular if f(X") C Y™

foralln > 0.



Denote by Cell the category of cell complexes together with cellular maps. We will also choose

to view simplicial complexes as cell complexes when convenient.

Proposition 2.1.4. Let X and Y be cell complexes. Then X x Y is a cell complex and the

associated projection maps m; and 75 are cellular.

Proof. Suppose 0 € F(X) and 7 € F(Y) are closed cells of X and Y respectively. If o is
homeomorphic to an n-disk and 7 is homeomorphic to an m-disk, then o x 7 is a closed cell
homeomorphic to an n + m-disk. Since this is true of all closed cells o and 7, X x Y is a cell
complex consisting of the appropriate closed cells.

Further note that 7y (o X 7) is an n cell and 7o (0 X 7) is an m cell, so 7 ((X x Y)"*™) C X"

and mo((X x Y)*™™) C Y™, Hence 7; and 7, are cellular. O

Definition 2.1.5. A (self) correspondence C' of a cell complex X is a subcomplex of the product

X x X in Cell.

Since C' includes into X x X, C' has its own projection maps 7; and 7, which come from
restricting m; and m,. For a self-correspondence C' of X, we have the following commutative

diagram of cell complexes, where all morphisms are cellular:

C
7T L T2
X xX
PN
X X

In a simplicial complex, each cell is a simplex and hence can be uniquely identified by its
vertices. This allows us to track where cells are mapped under ¢ by looking at the image of a cell’s

vertices. However, because a single cell can be broken up and sent to multiple cells, we cannot



capture where cells go using a function. Instead, we define a special type of correspondence to
track what cells correspond to what other cells.

For the rest of section 2, fix {x; } to be some fixed vertex set and fix some map ¢ : {x;} — {x;}.

Definition 2.1.6. If {x;} is a multiset of vertices, define A{x;} to be the maximal simplex on the

vertices {z;}.

Definition 2.1.7. Let K be a simplicial complex with vertices {z;} and ¢ : {z;} — {z;} be amap
on the vertices. Define ¢’ : K — 2% to be the map which sends an n-simplex [vy, . .., v,] to the

subcomplex of K consisting of all faces A{p(vy), ..., ¢(v,)} such that the faces are also in K,

P ([vr, - on]) ={r € K| 7 < A{p(w0), - -, p(va)}}

Note that {((vg), . . ., p(v,) } is in general a multiset because some of the elements may repeat.

Also note that A{p(vg), ..., ¢(vn)} is not necessarily a simplex in K.

Definition 2.1.8. Using the same setup as above, define the correspondence C,,(K) C K x K to

be the cell complex

Co(K)={oxrlce K,7€¢(o)}

Note that if oy < 09 and 7y < 7 then (07 X 71) < (02 X T3). Let K C L be simplicial
complexes with vertices {z;}. Then for 0 x 7 € C,(K), 0 x 7 € C,(L) because ¢'(0) C L,

hence we have an inclusion map C,,(K') < C,(L). This yields the commutative diagram in Figure

2.1

KxK —— LxL

J J

Co(K) —— Cp(K)

Figure 2.1: Induced inclusion on correspondences



2.2 An Adjunction Space For Correspondences

Definition 2.2.1. Let X and Y be cell complexes with A C X a subcomplex and f : A — Y a
cellular map. Define the adjunction space X [ J 1Y to be the pushout of the diagram consisting of

ACXand f: A— Y asinFigure[2.2]

A—— X

1 b

YT)XU]‘Y

Figure 2.2: The adjunction of two cell complexes

Proposition 2.2.2. The adjunction space of cell complexes X [ J ;Y is acell complex.

Proof. Indeed, because A is a subcomplex, we can define F(X |J;Y) = F(X — A) U F(Y).
Let 0 € F(XU;Y) be a closed cell. Further, since f is cellular, we can express o = a U
f where a« € F(X — A) and § € F(Y) are both closed cells. Since X and Y are both cell
complexes, a is homeomorphic to some closed n-disk and 3 is homeomorphic to some closed m-

disk. Therefore the homeomorphisms can be combined to see that o is homeomorphic to a closed

(max{m, n})—disk. O

Definition 2.2.3. Let f : A, — Y and g : Ay — Y be a pair of cellular maps and A;, Ay C X

subcomplexes of cell complex X where A; N Ay = (). Define fUg: Ay U Ay — Y as

f(z),z € Ay
(fug)(z) =

g(x),x € Ay

The next space we define is the space which we will use to detect homological features that

persist through applications of the dynamical system map .



™

N

/\
Cy(K) x [0,27] ) —— K x K K
\_/\ \7?/\

Figure 2.3: Maps for defining the ouroboros space O, (K)

Co(K) x {{0}, {2m}} —— Cu(K) x [0, 2]

K1 Uﬁgl l{)

K - > Oy(K)

Figure 2.4: The ouroboros space O, (K') as an adjunction in Cell

Definition 2.2.4. Let K be a simplicial complex with correspondence C,(K) and k1 = 71 010 py
and Ky = Ty 0 L 0 po, as in Figure 2.3] Define the ouroboros space of K to be the following

adjunction (see Figure in Cell:

OL(K) = (C,(K) x [0,27)) | K

Kr1UKo

The fact that O, (K) is a cell complex follows from propositions[2.1.4/and 2.2.2|since C,,(K),

0, 27], and K are all cell complexes, and 1 and k5 are cellular. Note that we can view O, (K)

with coordinates (¢, §) where ¢ € C,(K) is a point in the cell complex and § € [0, 27].

2.3 The Basepoint Constructible Map

In this section, we define a basis for the usual topology on the circle that allows us to view
the pointed circle (S, *) as a strafitied space as in [11]. We are interested in this particular basis
because it allows us to define a constructible map (see Definition [2.3.3) from the ouroboros space

O,(K) to (S', *) which we will use to study a dynamical system.



Definition 2.3.1. Define S! = [0, 27]/ ~ to be the circle where 0 ~ 27. Further define (S!, *) to

be the pointed circle where the basepoint * = 0 ~ 27 as in Figure

Definition 2.3.2. Define the basis B for the topology on (S', *) as follows:
B={(a,b) | 0<a<b<2r}U{[0,a)U (b,27] |0<a<b<2r}.

The basis elements of the form (a, b) are referred to as type I open sets and the basis elements of
the form [0, a) U (b, 27| are referred to as rype II open sets. Examples of each type of open set are

shown in Figure [2.5

PN

N

B

Figure 2.5: Pointed circle (S, ) with type I open set, A € B, and type II open set, B € BB, shown

Definition 2.3.3. Let X be a Hausdorftf, locally compact, and second countable topological space.
A continuous map [ : X — St is (S, *)-constructible (or just constructible) if forall V C U € B

of the same type, the inclusions
(XX = f7HU) = (X, X = f71(V)) V)= f7H(U)

are homotopy equivalences.



Definition 2.3.4. Given a simplicial complex K with vertices {z;}, define the map

f:O,(K)—S!

(c,0) — 0

To see that the map is well-defined, consider (c;,0) ~ (c2,27) € O,(K) where ¢; # ¢,. Then

f(c1,0) =0 ~ 21 = f(cq,27). So, this is a well-defined map to the circle S'.
Proposition 2.3.5. The map defined in Definition [2.3.4]is constructible.

Proof. First observe that O, (K) is a cell complex, and cell complexes are Hausdorff, locally
compact, and second countable topological spaces. Let V' C U € B be the same type. The fact
that both (O (K), Oy (K) = f7H(U)) = (Oy(K), Op(K) = f~H(V)) and f~1(V) < f71(U) are

homotopy equivalences follows using straightline homotopies for the diagram in Figure [2.6] since

f~YU) is path connected for any type I open set U € B. O
Co(K) x f7HV) —= Cy(K) x f7H(U)
lfom lfom
Vo . > U

Figure 2.6: Commutative diagram for showing the map in Definition is constructible

Definition 2.3.6. Let Con(S!, ) be the category where the objects are (S', *)-constructible maps,
and a morphism ¢ : f — g is a continuous map ¢ : X — Y such that f = g o ¢, i.e., a map which

makes the triangle in Figure [2.7|commute.

Define (Simpy,,;, C) to be the poset category of simplicial complexes on a fixed vertex set {z;}
with a fixed map ¢ : {x;} — {x;} where the morphisms are given by inclusion maps. Note that if

v+ K — L is amorphism in (Simpy, ;, C), then there is an induced inclusion on correspondences



X < y Y

N

Sl

Figure 2.7: Commutative diagram for a morphismc: f — g

i Cy,(K) — Cy,(L) as in Figure Note these inclusions can be extended to an inclusion on
ouroboros spaces I : O,(K) — O,(L) since there are inclusions (namely ¢, 77, and 73) between

the componenents of the pushout diagrams for O, (K) and O, (L) as in Figure

LCyp(K)
Co(K) x {{0}, {27}} - - » Co(K) x [0, 27]
L1 o L2
tCyp(L)
1 Uko C,(L) x {{0},{27}} - s C,(L) x [0, 2n]
K K y O, (K) oy
y1Uy2 \
L L y O,(L)

Figure 2.8: Induced inclusion on ouroboros spaces

Definition 2.3.7. Let  : K — L be a morphism in (Simp,.;, C) Then we have an induced

inclusion of ouroboros spaces I : O,(K) — O,(L). Define the constructible adjunction space

10



functor adj,, : (Simpy,.,, ) — Con(S', *) as

adj (K) : O,(K) — S'
(c,0) — 6
adj, (1) : Op(K) — Oy(L)

(¢,0) = (1(c),0)

11



Chapter 3

Bisheaves and Persistent Local Systems for (S!, x).

We are now interested in studying certain constructable functors for topological spaces valued
in Vec, the category of finite dimensional C-vector spaces. These functors will allow us to define
the persistent local system in degree d (Section [3.4), which will be the setting in which we are able

to algebraically determine what generators of degree d homology survive the map .

Definition 3.0.1. Let X be a topological space. An open cover U of X is a collection of open

subsets {U; }; such that U; N U; € Y forall U;, U; and X = |, U..

3.1 Sheaves over (S', x)

Definition 3.1.1. Let X be a topological space with poset category of open subsets Open(X) and
let be the category of finite dimensional C-vector spaces. A sheaf over X valued in Vec is a

contravariant functor

F : Open(X) — Vec

such that for all open sets U C X and all open covers U of U, the universal arrow
u: F(U) — lim F | is an isomorphism. The maps F(V C U) : F(U) — F(V) are called

restriction maps.

Definition 3.1.2. A sheaf over S! valued in Vec is (S!, x)-constructible (or just constructible) if
for every pair of basis elements V C U € B of the same type, F'(V C U) : F(U) — F(V)is an
isomorphism. If F(V C U) : F(U) — F(V) is also an isomorphism for all pairs V C U € B,

then F is a local system.

The collection of local systems over S! valued in Vec together with natural transformations

between them forms a category denoted Loc(S?).

12



Definition 3.1.3. An (S', ¥)-constructible sheaf £ over S! is an episheaf over S' if for every pair

of basis elements V C U € B, themap E(V C U) : E(U) — E(V) is surjective.

Definition 3.1.4. A sheaf map @ : F — G is a natural transformation of functors. If F is a (S!, *)-
constructible sheaf, then a sub-episheaf of F is an injective sheaf map @ : F' — FE to an episheaf
E over S'. Further, the epification Epi(F) is the maximal sub-episheaf of I, where the maximum

is taken over all images of sub-episheaves of F' ordered by inclusion. See Figure

\
7

El’ )Eg‘
F

Figure 3.1: Diagram for epification of a sheaf F'

Theorem 3.1.5. An (S!, x)-constructible sheaf over (S!, x) is equivalent to a pair of vector spaces

C", C™ together with linear maps a,b : C* — C™.

Proof. Indeed, by the definition of an (S, x)-constructible sheaf, we have one isomorphism class
of C-vector spaces over any type I open set and another isomorphism class of C-vector spaces over
any type II open set. The maps a and b are therefore given (up to isomorphism) by the restriction
maps from a type II open set V' to two type I open sets U, /W C V, one on either side of the

basepoint, as in Figure (3.2 0

3.2 Coheaves under (S', x)

Definition 3.2.1. A cosheaf under X valued in Vec is a covariant functor

F : Open(X) — Vec

13



Vv

Figure 3.2: Example type Il open set V' and type I open sets U, W used in Theorem for constructing
a simpler algebraic structure from a (S!, *)-constructible sheaf

such that for all open sets U C X and all open covers U/ of U, the universal arrow
u : colimFE |,— F(U) is an isomorphism. The maps F(V C U) : F(V) — F(U) are called

extension maps.

Definition 3.2.2. A cosheaf under S! valued in Vec is (S, *)-constructible (or just constructible)
if for every pair of basis elements V' C U € B of the same type, £(V C U) : F(V) — F(U) is an
isomorphism. If F(V C U) : F(U) — F(V) is also an isomorphism for all V' C U € B, then F

is a colocal system.

The collection of colocal systems under S! valued in Vec together with natural transformations

between them forms a category denoted Coloc(S!).

Definition 3.2.3. An (S!, x)-constructible cosheaf M over S' is a monocosheaf under S' if for

every pair V. C U € B, the map M(V CU) : M(U) — M(V) is injective.

Definition 3.2.4. A cosheaf map o : F' — G is a natural transformation of functors. If £ is a
(S', *)-constructible cosheaf, then a quotient-monocosheaf of I is a surjective cosheaf map « :
F — M to amonocosheaf M under S'. Further, the monofication Mon(F) is the minimal quotient
monocosheaf of F', where the minimum is taken over all kernels of quotient monocosheaves of F’

ordered by inclusion. See Figure[3.3]

14



e

N

o —» M,

L

C—

< «—

Figure 3.3: Diagram for monofication of a cosheaf F'

Theorem 3.2.5. An (S!, x)-constructible cosheaf under (S',*) is equivalent to a pair of vector

spaces C™, C" together with linear maps a,b : C"™ — C".

Proof. Indeed, by the definition of an (S!, x)-constructible cosheaf, we have one isomorphism
class of C-vector spaces over any type I open set and another isomorphism class of C-vector
spaces over any type Il open set. The maps a and b are therefore given (up to isomorphism) by the
extension maps from two type I open sets U, I/, one on either side of the basepoint, to the type II

open set V, where U, W C V, as in Figure [3.2] O

3.3 Bisheaves around (S*,

*)
Definition 3.3.1. A bisheaf is a triple (F, F', F') where F is a sheaf over X, F is a cosheaf under
X, and F is a collection of maps F(U) : F(U) — F(U) such that for all V' C U pairs of path

connected open subsets of X, the diagram in Figure [3.4] commutes.

Figure 3.4: Commutative diagram for defining a bisheaf

Definition 3.3.2. A bisheaf map @ : F — G is a pair of maps (@, o) where @ : F' — G is a sheaf
map and « : G — F such that for all path connected open sets U € B, the diagram in Figure [3.5]

commutes.



F(U) —== G(U)

F(U)l lG(U)

E(U) —— G(U)

Figure 3.5: Commutative diagram for defining a map of bisheaves

Definition 3.3.3. A bisheaf (F, ', F) is (S!, *)—constructible (or just constructible) if F' and F are
both (S, *)-constructible. Let Bish(S') be the category of (S!, x)-constructible bisheaves together

with bisheaf maps between them.

Theorem 3.3.4. A (S!, )-constructible bisheaf (F, F', F') around S' is equivalent to a collection

of C-vector spaces A, B, C, D and linear maps a, b, ¢, d, e, f in the shape of Figure[3.6

b

NN

A—>5 B C <2 D

N

a

Figure 3.6: Diagram of vector spaces and linear maps equivalent to a (S*, x)-constructible bisheaf

Proof. This follows by combining Theorem [3.1.5| with Theorem [3.2.5] together with the fact that
a bisheaf comes with the data of how to map from the sheaf to the cosheaf, F'. The vector spaces
A, D and the linear maps @ and b come from the sheaf F', while the vector spaces B, C and the
linear maps e and f come from the cosheaf F'. The linear map c is given (up to isomorphism)
by F(U) : F(U) — F(U) for some type I open U € B and the linear map d is given (up to

isomorphism) by F'(V') : F(V) — E(V) for some type Il open V' € B. O

Definition 3.3.5. An isobisheaf around X is a bisheaf (1,1, ) where I is an episheaf and [ is

a monocosheaf. For a (S!, *)-constructible bisheaf F, define the isofication to be the isobisheaf

16



Iso(F) := (Epi(F),Mon(F),n o F o7) where 7] : Epi(F) < F is the inclusion of sheaves and

n : Mon(F) — F is the projection of cosheaves.

Theorem 3.3.6. Let (I,1,1) be an isobisheaf around S'. Then the image im/ is a colocal sys-
tem and the coimage of coim/ is a local system. Furthermore, the colocal and local systems are

equivalent.
A proof is given in Proposition 5.6 of [11].

Definition 3.3.7. Define the assignment Ploc : Bish(S') — Loc(S') which sends the bisheaf F to
the image of 1 o F" o 7 in the isofication Iso(F). Further, by the universal property of images, for
a bisheaf map @ : F — G, there is an induced natural transformation Ploca : PlocF — PlocG.

This natural transformation is given by the universal maps between the episheaves and between

the monocosheaves as in Figure

Figure 3.7: Diagram showing the universal arrows ug and uj; induced by bisheaf map @ together with the
universality of episheaves and monocosheaves

By Theorem [3.3.6, each image Ploc(F) is a local system, and as mentioned above, a bisheaf
map @ : I — G induces a natural transformation between the local systems Ploc(F) and Ploc(G),

so Ploc is functorial.

Theorem 3.3.8. There is an equivalence of categories between Loc(S') and Coloc(S?!).

17



Proof. Since the restriction maps of a local system are all isomorphisms and the extension maps
of a colocal system are also all isomorphisms, these maps are invertible. Define J : Loc — Coloc

to be the functor sending the local system L to the colocal system L where
LV CU)=(L(VCU)™

Define I : Coloc — Loc to be the functor sending the colocal system L to the local system L where
LV CU)=(LV CU)™.

Then because (A™!)™' = A, T o J = Idoc and J o I = ldcoioc ON the nose. O

Based on the above we do not distinguish between ‘local system’ and ‘colocal system’ since
we are now justified in calling either a ‘local system’, regardless if it is a contravariant functor or a

covariant functor.

3.4 The Persistent Local System Over S' in Degree d

Definition 3.4.1. Let f : X — S! be a constructible map. Define the sheaf of relative singular

homology groups F, as

F.(U) = H(X, X = f7(U); C)

where the restriction maps F,(V C U) : F,(U) — F,(V) are given by the induced map ¢, :
H.(Y,Y — f[7Y(U)) = H.(Y,Y — f~1(V)) for the inclusion ¢ : V C U between path connected

open subsets of S!.

Definition 3.4.2. Let f : X — S! be a constructible map. Define the cosheaf of singular homology

groups F, as
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where the extension maps are F,(V C U) : F.(V) — F,(U) are given by the induced map
L Ho(f7Y(V)) — H.(f1(U)) for the inclusion ¢ : V' C U between path connected open

subsets of S!.

Note that it is sufficient to define a (co)sheaf at the level of connected open sets as we do here,
because we can extend our definition to an actual (co)sheaf by taking a (co)limit over all connected
open subsets of a given general open subset, as in the appendix of [11]]. Further, the sheaf defined
in and the cosheaf defined in are both (S, x)-constructible by Definition m

Since S! is a orientable manifold, we may fix a generator w € H*(S*,C) = C corresponding
to a choice of orientation of S!. For U C S! a path connected open subset, let 1 : H'(S!, St —
U) — H'(S") be an isomorphism (note x depends on the open set U). Fix a constructible map
f : X — S! Then f induces a homomorphism f* : H*(S',S! — U) — HYX,X — f~1(U)).
Hence (f* o u7')(w) | is a generator of H(X,X — f~1(U)). Therefore the cap product —~
(f*o ™) (w) lv: Hipt(X, X — f7YU)) — Hy(f*(U)) is a well-defined map from the sheaf
Fy11(U) to the cosheaf Fy(U).

Hon(X,X - ) Y9 gy (,X — £1(V))

A(f*oufl)(w)lul lﬂ(f*o;r
Ha(f71(U)) < Hy(f71(V)

F(VCU)

D@y

Figure 3.8: Commutative diagram showing that ~ (f* o u=1)(w) together with Fj;,; and F; defines a
bisheaf

Definition 3.4.3. Fix a degree d. Consider the assignment Bish; : Con(S?, *) — Bish(S') which
sends the constructible map f to the bisheaf (Fy,, Fy, F) where F,;, is the sheaf of relative
singular homology groups in degree d + 1 as in definition Iy is the cosheaf of singular
homology groups in degree d as in definition and F' is defined for connected open set U as
F(U) =~ (f* o u ) (w) |v. The fact that (Fyi1, Fy, F) is a bisheaf follows from the naturality
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of the cap product, see Figure Letc: f — g be amorphism in Con(S!, *) where f : X — S*
and g : Y — S'. Then c is a continuous map ¢ : X — Y and restricting to X — f~}(U) yields
¢ |x—prwy: X = f7HU) = Y — g~ (U). Therefore we have the horizontal maps induced by ¢, &,
and c,, which are shown in Figure Note this diagram commutes for any path connected open

subset U also follows by the naturality of the cap product.

Hoa (X, X — f7Y(U)) —=— Han(Y,Y — g71(U))
A(f*o#‘l)(w)lul lﬂ(g*ou‘l)(w)\a
Hy(f~1(U)) - > Hq(g7'(U))

Figure 3.9: Commutative diagram showing the functoriality of Bishg

Definition 3.4.4. Define the persistent local system in degree d, Plocg : Con(S!, %) — Loc(S'), to

be the composition of functors Ploc; = Ploc o Bish,.
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Chapter 4
The Grothendieck Group of Loc(S!, Vec)

In this section, we characterize the Grothendieck group (Definition [4.0.3) of the abelian cat-
egory Loc(S'). Our method for accomplishing this will be to compute the Grothendieck group
of a simpler category Vec” for which the indecomposables are readily computable. Further,
there is an equivalence of categories between Vec” and Loc(S'), which yields an isomorphism

of Grothendieck groups.

Definition 4.0.1 (Chapter 7 of [12]). An abelian category is a category containing a 0 object, all
binary products and coproducts, all kernels and cokernels, such that the following conditions are

satisfied:
1. All monomorphisms are kernels
2. All epimorphisms are cokernels
3. Every Hom(A, B) is an abelian group such that composition is bilinear.
Note that Vec and Loc(S", Vec) are both abelian categories.

Definition 4.0.2. In an abelian category, a sequence f : A — B and g : B — C'is called exact at
B if there is an isomorphism ker g = Im f causing the diagram in Figure 4.1|to commute.
Moreover, a sequence 0 -+ A — B — C — 0 is a short exact sequence if it is exact at A, B,

and C.

Definition 4.0.3. [12] For C a skeletally small abelian category, the Grothendieck group Ky(C) is
the abelian group with one generator for each isomorphism class of objects [A] and one relation

[B] = [A] + [C] for each short exact sequence 0 - A — B — C — 0inC.
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R

ker(g) > im( f)

N

Af>Bg>C

Figure 4.1: Definition of exactness at B

Proposition 4.0.4. If A and B are abelian and equivalent as categories, then Ky(A) and Ky(B)

are isomorphic.

Proof. By [13] Proposition 4.4.5, any equivalence F' : A — B can be upgraded to an adjoint
equivalence. Further, since right adjoints preserve limits (RAPL) and left adjoints preserve colim-
its (LAPC), the equivalence will preserve initial objects (colimit over empty diagram) and termi-
nal objects (limit over empty diagram). Further, kernels (pullbacks, hence limits) and cokernels
(pushouts, hence colimits) are also preserved by the equivalence. Therefore the equivalence is an
exact functor in both directions, so a sequence is short exact in A if and only if the corresponding
sequence in B is also short exact. Thus the Grothendieck groups are isomorphic since they will

have equivalent presentations. [

Definition 4.0.5. Let the category of Z representations Vec” be the category where the objects are
group homomorphisms ¢ : Z — GL(C"), n not fixed, and the morphisms A : ¢ — 1) are linear

maps A : C™ — C” such that the diagram in Figure 4.2] commutes.

cm —4 Cn

w(l)l liﬁ(l)

Figure 4.2: A morphism in the category Vec”

Proposition 4.0.6. There is an equivalence of categories between the category of local systems

over the circle Loc(S') and the category of Z representations Vec”.

22



Proof. Let J : Loc(S') — Vec” be the functor sending a local system given by C” and isomor-
phisms A and B to the Z-representation m +— (AB~")™. Let I : Vec” — Loc(S') be the functor

sending a Z-representation m — A™ to the local system given by C™ with the identity map / and
A. The natural isomorphism from o J to Id (S, Vec) is given by A~! and Idc as in Figure [4.3]

Going the other direction, note that J o [ = Id\/.z. [

cr —4° , cn

(O

¢ —"0

Figure 4.3: Natural isomorphism between I o .J and Id| oc(S!, Vec)

Definition 4.0.7. An object B in an abelian category is called reducible if there exist nonzero
objects A and C with morphisms f : A — B and g : B — C such that Figure 4.4]is a short exact
sequence.

Objects that are not reducible are called irreducible.

0 s A f>Bg>C

o

Figure 4.4: Short exact sequence for defining decomposable and reducible objects

Definition 4.0.8. An object B is decomposable in an abelian category if there exist nonzero objects
A and C with morphisms f : A — Band g : B — C such that Figure[d.4]is a split exact sequence.

Objects that are not decomposable are called indecomposable.

Proposition 4.0.9. Kj(Loc(S', Vec)) = @Dc\ (o) Z which is the group of formal integer linear

combinations of complex numbers with only finitely many nonzero coefficients.
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Proof. By Proposition , Loc(S',C) and Vec” are equivalent as categories and both abelian.
Hence their Grothendieck groups are isomorphic according to Proposition #.0.4] Indeed, the in-
decomposable isomorphism classes in Vec” are given by Jordan blocks acting on the appropriate
C-vector space. Moreover, a Jordan block J cannot be diagonalized further (see [14], Theorem
8.60) so [J] 2 [A] @ [B] for two nonzero Jordan blocks A and B. Now associate the element
n\ € @C\ (0} Z to the n by n Jordan block with eigenvalue A. Note that short exact sequences like
that in Figure 4.5|yield the relation n\ + mA\ ~ (n + m)A since the Jordan block corresponding to
(n + m)A can be fit into a short exact sequence with Jordan blocks corresponding to nA and mA.

Moreover, adding arbitrary isomorphism classes of Jordan blocks yields a formal integer linear

combination of complex numbers » _, n;\;. Therefore K o(Vec?) = @C\ (0} Z- U
A1 0 0 0
0 A 1 00
00 A 1 0 A 10
A1 00 0 x 1 0 A 1
0 [0 ,\] 00 0 0 A 0 0 A 0]

o o o o =
o O o = O
o O =

Figure 4.5: Example short exact sequence of Jordan blocks which does not split
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Chapter 5
Generalized Persistence for local systems over the

circle.

5.1 Constructible Persistence Modules of Persistent Local Sys-

tems over S!

Definition 5.1.1. The poset category (R, <) is a category with real numbers as objects and whose

morphisms are arrows p — ¢ whenever p < q.
Definition 5.1.2. A persistence module of local systems is a functor M : (R, <) — Loc(S!).

In particular, a persistence module of local systems assigns a local system M (p) to each real

number p and a morphism of local systems M (p < q) : M(p) — M(q) for each p < gq.

Definition 5.1.3. Let S = {s; < sy < -+ < s, } be a finite set of real numbers An S-constructible

persistence module of local systems is a persistence module M : (R, <) — Loc(S') such that
. M(p<gq)=0forallp <g<s
2. M(p < q) is an isomorphism forall s; < p < g < s;110rs, <p<gq

Persistence modules that are S-constructible for some S are called constructible.

For a persistence module of local systems M to be constructible, there must be a smallest real
number s; where M (s1) # 0. Furthermore, the persistence module local systems may only change
(up to isomorphism) finitely many times at discretely located real numbers s;. An example of a
finite (hence constructible) persistence module of Z-representations is shown in Figure which
by the equivalence of categories in Proposition .0.6] is equivalent to a finite persistence module

of local systems over S'.
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Figure 5.1: Example constructible persistence module M of Z representions, where the module is constant
forp > 5

5.2 The Rank Invariant of a Persistence Module of Local Sys-

tems

Definition 5.2.1. The poset category Int is the category where the objects are half open intervals

[a,b) C R and the morphisms are set inclusion.

Definition 5.2.2. Let S = {s; < --- < s,} be a finite set of real numbers. A map F' : Int —
Ko(Loc(SY)) is called S-constructible if for all A, B € Int where ANS = BNS, F(A) = F(B).

Maps that are S-constructible for some .S are called constructible.

Definition 5.2.3. Let M be an S-constructible persistence module of local systems for S = {s; <
.-+ < s,}. Note that because s; are real numbers, there exists 6 > 0 such that s; < s;.1 — 0 for
0 <@ < n. Fixt > s,. Then the rank invariant of M is the constructible map rkM : Int —

Ko(Loc(Sh)) given by

(

ImM(p < s; —0)] forl=p,s;)

kM (I) = < [ImM(p < t)] for I = [p, 00)

ImM (p < q)] for all other I = [p, q)

\

The rank invariant of a constructible persistence module of local systems rk M/ takes half open

intervals of real numbers [p, ¢) to equivalence classes of integer linear combinations of complex
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numbers [y, n;\;| corresponding to images of the module [ImM (p < ¢)] as in Definition [5.2.3|
Since we are working in the category Vec?, these images correspond to the image of the linear map

M (p < q). An example rank invariant is shown in Figure

A1 A A

00 o o ®
/\l )\1 2)\1 2/\1
5 T o o ® o

At AL+ 20+ A
4 o ®

1 2 3 4 5

Figure 5.2: Example rank invariant rk M for the persistence module in Figure
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5.3 Generalized Persistence Diagrams
Definition 5.3.1. A map F : Int — Kj(Loc(S")) is called S-finite if F([a,b)) # 0 implies either

a € Sandb € S, or b = oo. Maps that are S-finite for some .S are called finite.

Theorem 5.3.2. [15] Fix S = {s; < --- < s,} and let F : Int — K;y(Loc(S!')) be an S-

constructible map. Then there is an S-finite map G : Int — Ky(Loc(S')) such that

F(A) =) G(B) (5.1)

ACB

and G is called the Mobius inversion of F'.

Because Equation [5.1]is a sort of discrete analogue to the fundamental theorem of calculus
f(z) = [ f'(t)dt, we denote the Mobius inversion of an S-constructible map £’ by OF'. In fact,

some even refer to 0F as a ‘combinatorial derivative’.

Definition 5.3.3. If a persistence module of local systems M gives rise to a constructible rank
invariant rkM, then we denote the Mobius inversion of rkM as OrkM, and we call OrkM the

generalized persistence diagram (or just persistence diagram) of M.

In particular, the persistence diagram Ork M assigns formal integer linear combinations of com-
plex numbers ) . n;\; to half open intervals so that rk// and OrkM satisfy Equation

For the next theorem, we define a partial order < on K(Loc(S!)) as [a] < [b] if and only if [b] —
la] = [c] for some local system ¢ € Loc(S'). This is equivalent to saying [>_, n;\;| <[>, mivi]
whenever n; < m; for all 7. In other words, we can order local systems (up to isomorphism) by the

multiplicities of their associated eigenvalues.

Theorem 5.3.4. (Positivity, Proposition 7.1 in [15]) If M is a constructible persistence module

with persistence module Ork(A/), then for each I € Int, [e] < OrkM (1).

Persistence diagrams of constructible persistence modules of local systems can be visualized

as a normal persistence diagram over the wedge but decorated with integer linear combinations of
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complex numbers [» . n;);| over each point in the persistence diagram rather than just the rank of
a vector space as in Figure [6.9]

Moreover, positivity means that each of these integer linear combinations of complex numbers
is equivalent to a formal linear combination of complex numbers with each integer coefficient
being nonnegative, as in the persistence diagram shown in Figure For example, it would not
be possible to have —1(i) in a persistence diagram since there is no matrix where the eigenvalue ¢
has multiplicity -1. However, it would be possible to have a matrix with eigenvalue —¢ which has

multiplicity 1.

5.4 Stability of Generalized Persistence Diagrams

In this section, we describe a result which justifies the use of generalized persistence diagram
with real-world data, which is noisy. This result, known as stability, guarantees that similar samples
will yield similar persistence diagrams. This will be especially important for proving the stability

of our pipeline, which we prove in Section [6]

Definition 5.4.1. Let R x. {0, 1} be the poset category (R x {0}) U (R x {1}) with objects (p, s)

and morphisms (p, s) < (¢, t) whenever
e t=sandp < ¢, or
et#sandp+e <gq.

Further, let ¢y and ¢; be the inclusions of the poset category (R, <) into R x {0} and R x {1}

respectively.

Definition 5.4.2. An c-interleaving of two constructible persistence modules M and N valued in
an abelian category C'is a functor £ : R x. {0,1} — C making the following diagram commute

up to natural isomorphism:
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A

1 2 3 4 5

Figure 5.3: Example persistence diagram OrkM obtained by Mdbius inverting the rank invariant in Figure

B2

Definition 5.4.3. The interleaving distance of two constructible persistence modules M and N is

di(M,N) =inf{e > 0| M, N are c-interleaved. }

If there is no such € where M and N are e-interleaved, then d;(M, N) = oc.
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At

Figure 5.4: Equivalent barcode for the persistence diagram in Figure

(R, <) ——= R x,.{0,1} +*— (R, <)

Definition 5.4.4. A matching between persistence diagrams OrkM : Int — G and OrkN : Int — G

isamap ¢ : Int X Int — G such that

OrkM(I) = (I, J) forall I € Int

Jé€lnt

OkN(J) = > (I, J) forall I € Int

I€int

Definition 5.4.5. The norm of a matching is

= max max{|by — as|,|b; — a
loll= o max (et = aal, = )

Definition 5.4.6. The Bottleneck distance between persistence diagrams JrkM : Int — G and
OrkN :Int — Gis
dp(OrkM, OrkN) = inf ||¢||
@

which is the infimum of the norms of all matchings ¢ between drkM : Int — G and OrkNInt — G.
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Theorem 5.4.7. [Bottleneck stability, Theorem 5.6 in [16]] Let C be a small abelian category
and M, N : (R, <) — C be two constructible persistence modules. Then dg(OrkM,OrkN) <

dy(M, N).

Theorem [5.4.7implies that any constructible persistence module of Z-representations which is
"close enough’ to the module shown in Figure [5.1]in the interleaving distance will have a corre-
sponding persistence diagram which is relatively similar to the persistence diagram in Figure [5.3]
Similar persistence diagrams of this type will have points with the same eigenvalue close to the

points in the original persistence diagram.
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Chapter 6

The Pipeline

6.1 General Description

In our pipeline, we start with a discrete dynamical system (M, d, ) consisting of a metric

space (M, d) and a continuous map ¢ : M — M for the dynamics.

Definition 6.1.1. Let X C M be a finite sample of a discrete dynamical system (M, d, ). Without
loss of generality, the minimum minyecx d(¢(x),y) is unique for all # € X. Define the map

vx : X = X as follows:

px(z) = arg ryrgg d(o(x),y).

Then ¢ x sends the point x € M to the point in X which is closest to the point p(z).
Definition 6.1.2. [17, Page 61] Let X C M be a finite sample. Define the Vietoris-Rips complex
or VR complex X, at scale parameter r > 0 to be the simplicial complex

X, ={o < A(X) | diam(o) < 2r}.

We are now ready to describe the steps for constructing the persistence module of persistent

local systems from a finite sample of a discrete dynamical system.

1. Use the metric d restricted to the sample X to construct a 1-parameter filtration of Vietoris-

Rips complexes { X} (Definition [6.1.2)) where the inclusion maps are ¢, <, : X, — X.

2. For each VR complex X, construct the correspondence C,, (X,) using ¢ x as in Definition
Applying this construction to the filtration { X,.} yields a filtration of correspondences
{C, (X,)} with the induced inclusions Z,<; : Cy (X,) = C, (X;); see Figure
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3. For each correspondence of VR complexes C,, (X,.), construct the ouroboros space O,,, (X,).

This yields a filtration of ouroboros spaces {O,, (X,)} with induced inclusions 7,< :

Opy (X;) = O, (X,); see Figure[2.§|

4. For each ouroboros space O, (X, ), construct the constructible map adj,,  (X,) : O, (X;) —
S!. The induced inclusions on ouroboros spaces ,<, commute with the construcible maps
adj,, (X,) and adj, (X;); see Definition This results in a filtration adj, (X,) of

constructible maps to the circle.

5. In each degree d, apply the Bish; functor to the filtration adj, (X,) to get a collection of
persistence module of bisheaves, one for each degree, E, around (Sl, ); see Definition

6. Apply the persistent local system functor Ploc (Definition |3.3.7) to each degree d persistence
module of bisheaves to get a collection of degree d persistence modules of persistent local

systems.

Proposition 6.1.3. If X C M is a finite sample, then Plocy(adj,{ X, }) is a constructible persis-

tence module of persistent local systems.

Proof. Consider the set of all distances S := {d(p, q) | p, ¢ € X } between points in the sample X.
Then since X is finite, so is S, and hence there are only finitely many Vietoris-Rips complexes X,
in the filtration {X, }. This gives rise to finitely many constructible maps adj,, X,. Applying the
Ploc, functor (see Definition [3.4.4)) yields a persistence module of finitely many distinct persistent
local systems Plocy(adj, X,). Hence Plocy(adj,, X,) is an S-constructible persistence module

of persistent local systems, meaning this persistence module is constructible. 0

Definition 6.1.4. Let X and Y be finite sets with maps ¢ : X — X andvy : Y — Y and
respective filtrations of VR complexes { X, } and {Y,}. Then denote by {C,,(X,)} and {Cy(Y;)}

the filtrations of the respective correspondences. An e-homotopy-interleaving of {C,(X,)} and

34



{Cy(Y;)} is a collection of maps f, : Cy,(X,) = Cy(Y,ie) and g, : Cy(Y,) = Cyu(X,1c) such
that g,,. o f, and ¢, <, ;9. are homotopic maps, and f,. o g, and ¢,<,1o. are homotopic maps for

all » > 0 (see the triangles in Figure [6.1]).

Co(X,) =25 Cp(Xppe) =25 C (X0 . Co(Xore)
/ % fs+s
N 9r+e \
C@<Yr+s) s C@ (YS) m Cw (Ys+s) Lms Cgo(YSHs)

Figure 6.1: Triangles for defining an e-homotopy-interleaving

Note that the condition that e-homotopy-interleavings must satisfy is strictly weaker than com-
mutativity, which is the condition required for an interleaving. One can think of this weaker version

of commutativity as ‘commuting up to homotopy’.

Proposition 6.1.5. Suppose X, Y C M are both finite samples with Hausdorff distance dy (X,Y) =
e/2. Let px : X — X and ¢y : Y — Y be defined respectively from ¢ as in Definition

Suppose the map ¢ : X UY — X UY given by

¢X(p)7p eX
U(p) =

¢Y(p>7p ey

is Lipschitz continuous with constant k£ and

V=2 (g dlo 00) ) ©.1)

£ \peXUY

Then the filtrations {C\(X,)} and {Cy(Y;)} are (N + k)s-homotopy-interleaved.

Proof. Because dy(X,Y) = £/2, there exist maps f : X — Y and g : ¥ — X such that
forall z € X andy € Y, d(z, f(x)) < ¢/2 and d(y,9(y)) < /2. Fix r > 0 and define
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[ Cu(Xy) = Yiruame X Yootk as

f : [Uh"‘avn] X W)(Uh)w"aw(vim)] = [f(v1>7"'7f(vn)] X [w(f<vll))7aw(f<vlm))]

To see that [ : Cy(X,) = Cy(Yyi(ar1k)e) is well-defined, suppose that z, 2’ € X are points such

that d(x, 2") < r. Then applying the triangle inequality to the diagram in Figure we have that
d((f(v:)), ¥ (f(v)))) <7+ (M + k)e. Hence [f(v1), ..., f(va)] X [¥(f(vi))), .., (f(vi,,))] is

a cell in Cy (Y4 (r+k)e), SO £ is well-defined. Repeating a similar process as above to g produces

amap g : Cy(Yrprire) = Cop(Xetorir)e)-

£/2 TA; 77777777777777777 ;47;\ £/2
f@) & o) bae  ef()
T e 2
b(f()) V(f())

Figure 6.2: Upper bounds on the distances between points used in the proof of Proposition

Now, to show that this forms an (M + k)e-homotopy-interleaving, we will show that g o f is
homotopic to t,<;4 (ar4k)e, NOting that a similar argument works for fog. This can be accomplished
by showing (o x ) and (go f) (o x ) are both faces of some common cell ax 3 in Cy (X, 4 o(ar1£)e)s
a concept sometimes referred to as contiguity.

Leto x 1 € Cy(X,)beacell and 71, 75 : Cy(Xyi2(0r1k)e) — Xrt2(Mm-+k) be the projections at
parameter r + 2(M + k)e onto the first and second component respectively (see Definition [2.1.5)).

If we denote by vert(o) the set of vertices of simplex o, then define
a = Alvert(o) U vert(77 0 gry(ar+k)e © fr(o X 7))]
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and

B = Alvert(7) U vert(T2 © gry(amr+k)e © fr(0 X 7))]

as in Definition Indeed, if u and v are vertices of o, then d(u,v) < r, so d(v, g(f(u))) <
r + 2¢ meaning & € X, o.. Now if u and v are vertices of 7, then similarly, d(v, g(f(u)) <
r+2(M +k)e, 50 B € Xy pomsk)e

We have now shown that « and 3 are both in X, on4k).. Further, 3 is a face of ¥(a) by
construction of f and g. Hence o x 3 € Cy(Xry2(M+k)e). By definition of v and 3, o x B is a cell
in Cy(X,12(0m+k)e) for which o x 7 and g o f(o x 7) are both faces (see Figure , meaning the

maps g o f and ¢,<,4(avr+k)e are homotopic. ]

Figure 6.3: An example of cells in a correspondence which are faces of a common higher dimensional
cell. In this figure, o1 X 71 and o9 X 79 are both faces of 3 x T'. This means there is a homotopy in this
correspondence between a map with image o1 X 7; and a map with image o9 X To.

Proposition 6.1.6. If X, Y C M are two finite samples of a discrete dynamical system where v is

Lipschitz with constant £ and M as in the statement of Proposition then for each degree d,

dp(0rk(Plocg o adj, (X)), drk(Plocg o adj,(Y7))) < (M + k)dg(X,Y).
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Proof. Indeed, by[6.1.5] we have (up to some constant) an e-homotopy-interleaving of filtrations of
correspondences of VR-complexes of X and Y. Further, applying yields two constructible
persistence modules of persistent local systems. Note that the persistent local system is defined
using relative and ordinary singular homology, which are homotopy invariant, so for each degree
d, the persistence modules Plocy({Cy(X,)}) and Plocy({Cy(Y,)}) are c-interleaved, since they

will now commute up to isomorphism. Lastly, since they are constructible persistence modules,

applying Theorem yields the inequality. O]

6.2 A Computational Example

The following example uses the same input as the example in the introduction of [9]]. Let M be
the standard unit circle S* embedded in C and let ¢ : M — M be given by z — 22, the squaring
map. We take the eighth roots of unity (roots of f(z) = 2% — 1) as our sample for this dynamical

system, labeled O through 7. The resulting filtration of Vietoris-Rips complexes (see Definition

[6.1.2)) is shown in Figure [6.4]

V6]

04 0o

Kl KQ KS K4

Figure 6.4: Filtration of VR complexes for the sampling of the circle

Of particular interest to us is the VR complex shown in K3. The correspondence C,,(K3) for
K is represented in Figure [6.5] both in terms of the products of maximal cells. The way in which
these products are glued in the correspondence is indicated by the lines and arrows connecting the

entries.
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Note that K3 has Hy(K3;C) = C and H,(/K35;C) = C. Viewing C,(K3) as a space over
the circle as in Figure one may compute the homology groups of C,(K3) using the Oth
and Ist Leray cosheaves of homology with C coefficients. This yields Hy(C,(K3); C) = C and
H,(C,(K3); C) = C°. The ouroboros space O,(K3) (see Definition [2.2.4) has constructible map

adj,(K3) (see Definition [2.3.4).

02 | 24 | 46 | 60
012 | &
123
234 .
3451 L
456 | o
567
670 .
701 o L

Figure 6.5: The cell complex structure for the correspondence. Each dot represents a product of maximal
simplices, each line represents a common face along which they are glued, and each arrow indicates that a
connection ‘wraps around’ the table.

We now examine the degree 1 bisheaf E of f.LetU € Bbeatypelopensetand V € Bbea
type II open set (see Definition [2.3.2)). Since S' is a 1 dimensional manifold, the degree 1 bisheaf

is uniquely determined, up to isomorphism, by the diagram shown in Figure [6.6]

EU)=C® 5 FU)~C® s COx F,(U) = Cx~ M)

R A T S

B =CT — B(V) = CF 5 C= (V) ——= C= U0V

Figure 6.6: The degree 1 bisheaf I}

39



Figure 6.7: Generators of H(C,) = C? represented (up to homotopy)

Note the sheaf F, is already an episheaf, so the epification £ is F,. Further note that the
monofication of F, denoted M also happens to be the persistent local system for F; since the
image over U is C and the image over V is also C. Further, the degree 1 bisheaves I, for the
VR-complexes K, K5, K4, and K5 each have trivial persistent local system. Therefore the corre-
sponding persistence module of persistent local systems in degree 1 is given by Figure and the

corresponding persistence diagram is shown in Figure [6.9]

0 0 C 0 0
x1 X2
0 0 C 0 0
. . ; ' >
0 1 2 3 4

Figure 6.8: Constructible persistence module of persistent local systems for the example dynamical system
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1 2 3 4

Figure 6.9: Persistence diagram of the persistence module in Figure
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