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MORSE FORMATIONS

JACOB CLEVELAND

ABsTrACT. This paper collects various ideas I have in differential topology. Namely, it attempts to explore some
connections between differential forms, Morse theory, and geometry. Specifically, generalizations of the gradient
vector field of a function to a function defined on a manifold are defined, which is a critical concept for much of
Morse theory, especially Morse homology. We also discuss using Morse theory to prove things about geometry, as
well as what happens when a k-form is pulled back along the gradient of a Morse function. Of my original ideas

herein, only a few probably hold up to any scrutiny, so be warned.

1. INTRODUCTION

1.1. Notations. In general, for f some sort of function between manifolds, f, denotes the pushforward and f*
denotes the pullback. T}, M denotes the vector space of vectors tangent to some manifold M at a point p. v, denotes

a vector in T, M. QF(M) denotes the k dimensional smooth differential forms of M, or just k—forms for short.

1.2. Notions. The following are important definitions and theorems from basic Morse theory. In general, let
f: M — R be a smooth function.

Definition 1.1. The Hessian is the (symmetric) matriz of second partials of f,
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Definition 1.2. A point p € M is called degenerate if det(H;(p)) = 0 and non-degenerate otherwise.

Definition 1.3. A function f with no degenerate critical points is called Morse.

Definition 1.4. The number of —1’s in the diagonalized Hy(p) is called the index of f at p a critical point of f.
The index is usually denoted by .

Theorem 1.5 (Morse Lemma). Let f: M — R be a smooth function with non-degenerate critical point py. Then
one may choose a local coordinate system (X1, Xo,...,X,) about py such that f, when represented using these local
coordinates, has the form

f=-Xi— - X3+ X3+ -+ X +c
where X is the index of f at pg.

Corollary 1.6. Non-degenerate critical points are isolated.

Corollary 1.7. A Morse function on a compact manifold admits only finitely many critical points.
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2. GRADIENT-LIKE VECTOR FIELDS

The following is a summary of section 2.3 from Matsumoto’s Introduction to Morse Theory [Mat02].
Suppose M is a smooth manifold and v, € T,(M) is a tangent vector at a point p € M.

Then one can write v, using the ’differential standard basis’ {%} as

vpiz p@x

One reason for doing such a thing is to then define the directional derivative of a smooth function f: M — R as

v f = Zp@x

To make things easier, we don’t require our tangent vectors to be unit vectors, but if we did, then we get the
interpretation that v, - f is the amount that f changes in the direction of v,.
Similarly, we can define a (smooth) vector field X as a function that sends a point p € M to a tangent vector at

p, i.e. an element of T},(M).

B)
X:;Aia—xi

where the A; are smooth functions.

A special kind of vector field for a function f defined on an open subset of R™ is

2y
Ox; Ox;
i.e. a vector field where each coefficient is the partial derivative of f.
Observe that

a 2
x1=3 (55)

hence Xy - f > 0.

If an f is a Morse function, then locally about a critical point of index A f can be expressed as

f=—ai——ai Al e ta,

and then

0
+ 255)\4-17 + -+ 2:Cm

0 0 0
Xf = —2:131 2$)\ 6.%‘)\+1 W

0xy O0x )

Observe that this can (so far) only be done locally in subsets of R™, but we would like a similar notion for
manifolds. One way to achieve this is to take a function defined on a compact manifold, compute the gradient of a
function on an open cover, and extend this smoothly to a vector field defined on the whole manifold. Such a vector

field motivates the following definition:
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FiGURE 1. Gradient-like vector field at a critical point with index 1 < A < m
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F1GURE 2. Gradient-like vector field at a critical point with index A =0
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FIGURE 3. Gradient-like vector field at a critical point with index A =m
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Definition 2.1. A gradient-like vector field X for a Morse function f : M — R is a vector field such that

(1) X - f(p) > 0 for p not a critical point of f
(2) If p is a critical point of index X, then there exists a meighborhood V of p with a coordinate system

(x1,...,2Zm) such that
f=—ai—mal 4k e+ ()

and X can be written as its gradient vector field

10} 3}
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Lemma 2.2 (Critical Point Cover). Suppose M for M a compact manifold, and f is a Morse function f : M — R.
Then there exists a finite open covering M = U;U; such that each critical point of f has a neighborhood contained

in exactly one open U;.

Proof. Let M = U;U; be a finite open covering. WLOG, suppose pg a critical point contained in U;NU;, two distinct
open subsets in the open cover of M. Since the intersection of two open sets is open, one may pick a compact
subset V' C U; NU; such that the interior int(V') contains po. Define U £ U; — V. Then Uj is open, because the
compliment of UJ{ is Uj UV which is closed, which follows from the fact that compact implies closed in Hausdorft
spaces, which M certainly is, being a smooth manifold. Now replace U; by U J' in the covering U;U;, which certainly

still covers M since we only removed something from the intersection. 0

FIGURE 4. Two open subsets U; and U; in the open covering containing critical point pg, together

with containing compact V.

One may proceed inductively on the number of intersecting sets containing py. However, care must be taken
in choosing the compact set V' since removing V could potentially remove necessary points from another open
neighborhood of another critical point, which may make that open neighborhood no longer open. The upshot is
that because the critical points are isolated, it should be possible to remove small enough V' and still be left with
a neighborhood of each critical point.

One should also note that the converse is not true, i.e. there exist finite open covers with constituent open sets

that do not contain any critical points of f.

Theorem 2.3 (Existence of Gradient-Like Vector Fields). If f : M — R is a Morse function and M is a compact
manifold, then there exists a gradient-like vector field for f on M.



MORSE FORMATIONS 5

Proof. Begin by taking M = U;U; the open cover of M and applying the Morse Lemma to each critical point to
rewrite f locally in standard form. Further, apply Lemma 2.2 to each critical point to modify the open cover so that
each critical point is contained a compact neighborhood which is contained in exactly one coordinate neighborhood
U;. If necessary, one may add in the necessary coordinate neighborhoods to get back to an open cover of M.

Now for each Uj, construct a gradient-like vector field using the coordinates of U;

LOL 0 ol o

j_Tmaxl 0%y 0T,

Further, let {h;} be a smooth partition of unity with h; corresponding to neighborhood U;. Now define the vector
field

k
X &3 hX;
j=1

where h;X; has been extended to all of M by setting it to the zero vector outside of U;.
Now, we wish to show that X is a gradient-like vector field for f on M. First, suppose p is not a critical point of
f. Then (h; X; - f)(p) > 0if p € U; and (h; X; - f)(p) = 0 otherwise. Moreover, since the U; cover M, every point
is contained in some Uy, so X has at least one positive term for any p. Hence X - f > 0 at non-critical points.
Second, suppose pg is a critical point of f. Recall f is in standard form in a compact neighborhood V about py,

and h;X; = X is the only nonzero term in X on V, so locally X has the form given by equation (b). O

To summarize, a smooth partition of unity subordinate to a compact covering of M was constructed to ’glue’
together some local gradient vector fields into a global gradient-like vector field. Namely, if h; is the smooth
partition of unity and X; is the gradient of f on compact K, then X =" j h;X;, which is positive on non-critical

points of M and has the form in (b) on critical points.
Definition 2.4 (Integral Curve). Suppose X is a vector field on manifold M. Then an integral curve is a function
¢p i (—00,00) = M

where ¢p(0) = p and
% = Xe, (1)

In other words, this means that the velocity vector of the curve at a point in its image matches the vector field at
that point. It is a fact that on compact manifolds without boundary, for arbitrary ‘starting’ point p, there exists an
integral curve ¢, (t) for X. This fact can be concluded by applying the Picard-Lindel6f Theorem to the differential
equation dd%p(t) = X, 1) since X (4 is a smooth function of ¢, and smooth functions have continuous derivative,
hence are Lipschitz continuous.

The important thing that Matsumoto points out about integral curves of gradient-like vector fields is that they
‘flow” between critical points, unless ¢(0) is a critical point, in which case the integral curve is constant. This is
useful because it helps show that roughly, the topology of a manifold remains constant between critical points.

Define the submanifold (with boundary) from a to b for Morse f : M — R

Mgy £{pe M |a< f(p) <b}
If f is the height function of M, then M,y is just the points of M with height between a and b.

Theorem 2.5. If f is a Morse function that has no critical value in the interval [a,b], then M,y is diffeomorphic
to f~1(a) x [0,1].
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Proof. Indeed, since f has no critical values in [a, b] then if X is a gradient-like vector field for f,
1
Y&
X-f
is a vector field defined on M, y.
Let ¢,(t) = (21(t),...,zn(t)) be an integral curve of Y starting at p € f~!(a). Then
N
0 =3 T 050

dml dl‘N
= (dt(t)""’dt(t)) - f
=Y. f
*Xi.f( - f)

=1

so that c¢,(t) moves at a unit pace w.r.t. f, meaning that c,(b —a) € f~!(b) since the length of [a,b] is b — a.
Now let h: f~1(a) x [0,b — a] = Mj, ;) be defined as

h(p,t) = cp(t)
which is a diffeomorphism since ¢, (t) is smooth with respect to p and with respect to ¢, and since integral curves

are unique here. Hence M, ;) = f~(a) x [a,b)]. d

In fact, this can be extended to a statement about smooth functions (not necessarily Morse) for which 0 is not a
critical value, since application of the implicit function theorem® says that f~1(0) is a submanifold of m-manifold
M with dimension m — 1.

The main thrust of this section is that later on in the text, and in Morse theory in general, the topology of a
manifold is studied by breaking up the manifold between critical points using these ’collar neighborhoods’ which
look like a slice of the manifold cross an interval. Equivalently, these are sections of the manifold where the topology
cannot change, because they contain no critical points for the corresponding Morse function f. This leads to things

like Morse homology and the Morse inequalities.

<2 o
73 N

IThis is using the version of the implicit function theorem described in Matsumoto where one of the m coordinates can be solved

for the others using the relation f(z1,...,2m) =0
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3. HOW TALL IS YOUR MANIFOLD?

In this section we describe why height functions of manifolds are the only Morse functions worth considering.
Proposition 3.1. All Morse functions can be expressed as the height function of some manifold.

Proof. It f : M — R is a Morse function of M, then F(Z, f(Z)) is a smooth function from M to M x R. Indeed,
M x R is a smooth manifold, so then composing projection with F is a Morse function, since 7,410 F = f. Further,
Tp41 is the height function for the manifold M x R. 0

4. DO CRITICAL POINTS CURVE?

In this section, we investigate computing Gaussian curvature of Morse functions f : R?> — R specifically at
critical points. Moreover, we investigate applying Morse theory and these connections between critical points and

curvature to compact geometries in R3.

4.1. Curvature. The Gaussian curvature of surface S with local coordinates (x,y) is Az 0Ao,2 — A7, [HH98]. The
Taylor Series for this function is given by f(x,y) = 1/2(As,02* 4+ 241 12y + AF ,y°)+ higher terms.

0% f
420 = Gu2
0% f

A =
b Oxdy
0% f
do2=75,2

The mean curvature is 1/2(A2 0 + Ao 2).

Observe that the Gaussian curvature is precisely the determinant of the Hessian matrix for f at p.

Proposition 4.1. Suppose f(x,y) : R? — R is a smooth function. Then if p € R? is a non-degenerate critical
point of f, then the Gaussian curvature at (p, f(p)) on the surface implicitly defined by F(x,y,z) = z — f(z,y) =0
is nonzero, K(F) | r(pm7 0.

Proof. Indeed, for F(z,y,2) = z — f(z,y) = 0, F, = %—5 =1 # 0. Observe that % = f% = —F, and
g—‘fj = —% = —F,. Suppose that p € S is a non-degenerate critical point of f(x,y). Then F, = F, = 0. Further,
H(f) is nonsingular, namely |H(f)| # 0.

According to [Gol05] equation 4.1, the following formula for the Gaussian curvature of an implicitly defined

surface F(x,y,z) = 0 is true:

H(F) VFT
VF 0
K(F) ZaE

where H(F') is the Hessian matrix of F' and VF is the gradient of F.

Now to compute the Hessian matrix f,

1
F2

F:vsz_Fzez meFz_Fszy
F,,F., - F,F., F,F.—F,F.,

However, evaluated at the critical point p, we can use the fact that F,, = F;, = 0 to reduce H(f) to

H(f) =

1
F2

waFz meFz

H =
) Fo F, FyF,
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Since p was assumed non-degenerate, |H(f)| # 0 so Fyo Fyy — F7, # 0. Observe (VF)!'K(F) = Fyo Fyy, — F

Ty

and VF =[0,0,1], so (VF)* =1 and K(F) # 0. O
Proposition 4.2. All closed smooth manifolds have a Morse function with at least one critical point.

Proof. Let M be a closed smooth m-manifold. Indeed, the constant function ¢g is a smooth function on M. Locally
in a coordinate neighborhood of M, linearly morsify the constant function, yielding a1xy + - - - + anxy + ¢, which
has no critical points. Now consider the standard bump function f(x), but where only f(0) = 1, and everywhere
else f(z) < 1. Since f(x) is smooth, it has bounded derivative, so pick a; above smaller than the max derivative.
Then F(z) £ f(x) 4 a121 - + anx, + co is a Morse function with exactly two critical points, one in the ’elbow’
of the bump function and one on the upward facing portion of the ’hump’ of the bump function. Computing
derivatives of F'(x), one sees the critical points are equivalently points p € M where 6(9% = —aq,; for all i. Further,
neither of these critical points are degenerate, because the Hessian matrix for F'(x) is the same as f(z), and the

Hessian of f(x) is nonsingular on the support of f(z). O

Corollary 4.3. All closed smooth surfaces embedded in R® have a point with nonzero Gaussian curvature. Namely,

there are no closed surfaces with constant 0 curvature.

This follows from combining the previous two propositions; namely, we take a compact surface embedded in R3,
define a Morse function where the compact surface is (locally) defined by the graph of the Morse function?, and
then compute Gaussian curvature as above to see that the surface had to be closed in order to be compact.

The reason we need to be embedded in R? is because the flat torus is a counterexample to this fact in higher
dimensions. The flat torus is a closed smooth surface with zero curvature at every point, but it must be embedded

in R*,

5. WHY NOT MORSE FORMS?

In this section we discuss half-hearted (read: failed) attempts at defining what a Morse form could be. The main
thrust of this section, however, is why these attempts fail to be fruitful.

Consider the following potential definition for a Morse (differential) form:

Definition: A Morse form in R” is a differential form w = A;dzy, + --- + A dxy,, where all A; are Morse
functions.

The problem with this is that points where A; has (nondegenerate) critical points might differ from where A; has
(nondegenerate) critical points. However, if one is willing to swallow this complication, then finding nondegenerate
critical points of w becomes solving a (homogeneous) system of Hessian matrix determinants {det H(A;)(p)}.

An alternative algorithm would be to search the space of critical points associated to one H 4, to see if det H, (p) #
0 for any j. Once a certain point has been eliminated as a possibility for H4,, it can be ignored for the rest of the

matrices and hence one only has to check all critical points for one Hessian.

Definition 5.1. The Jacobian J is the n by m matriz of partial derivatives

Ok;
8uj

J(k)ij = {

The pushforward of £ : M — N for M an m dimensional manifold and N an n dimensional manifold, k. :
T,M — T,N, is a linear operator generalizing the Jacobian between subsets of R™ and R". This pushforward k.,

maps tangent vectors to tangent vectors.

2This should actually be proven.
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Note that pushing forward tangent vectors only works pointwise, i.e. it is not possible to push forward a vector
field, because the map k might not be injective, meaning multiple tangent vectors in the tangent bundle of M, T M,

might get mapped to the same Ty (p) N, which would mean a vector field would not be sent to a vector field.

5.1. The Hessian. Note that for f : R” — R, then the Hessian matrix H; can be expressed as the Jacobian of
the gradient of f, J(Vf). So Hy = J(Vf).

This Jacobian expresses the pushforward of tangent vectors along the gradient of f.

(V) vp = (J(V 1)) (vp)
Now (loosely) considering V f as a map from R™ — R™, one can consider w € Q"(R™) a nonzero n-form on R"

with compact support, and think about the following integral:

[ @@= [ w@n.

:/an(Vf)
:/ Zal det(Hy)dz" ... dx"
"I

The interesting thing about this integral, however, is that the det(Hy) shows up, which is a crucial condition
for degeneracy of critical points. Moreover, recall that the Morse Lemma implies that critical points of a Morse
function are isolated, and since isolated sets are countable, the set of critical points of a Morse function is measure
0. Hence, the value of the integral only comes from the non-critical points of R™. Further, as a consequence, if
det(H(p)) = 0 for all non-critical points of a manifold for Morse function f, then [, (Vf)*(w) = 0.

We will now show that this is a contradiction when V f is a diffeomorphism and hence there are no such Morse
functions with det(Hy(p)) = 0 for all non-critical points.

Without loss of generality, pick w that integrates to a nonzero value over R™. Then, by the definition of integrating

a differential form, and since we’re assuming V f : R™ — R” is a diffeomorphism,

[w=[

But then [, (Vf)*w # 0 so there is a contradiction above. Hence there do not exist Morse functions with
diffeomorphism gradients where all non-critical points are degenerate. In other words, for every such Morse function,
there exists at least one non-critical point p where det(H¢(p)) # 0.

There is an alternative way to see a stronger result, due to Michael Moy. The stronger result is that det(H¢(p)) =
0 can’t be true for all points except the critical points (if there are any) Since f is smooth, H is smooth as a matrix
of functions, and det of a matrix of smooth functions is a polynomial of smooth functions, and hence det(Hy) is
smooth. Further, since det(H¢(p)) # 0 for critical points, we have that det(H(p)) # 0 in a neighborhood around
each critical point, since it needs to be smooth, and hence continuous.

Yet another way to imagine this situation being true is by thinking again about the Morse Lemma, which would
imply that locally a Morse function about a critical point looks like either a hyperboloid or parabolic, and points
in that neighborhood have nonzero det(H(p)).

Regardless, this implies the existence, for an arbitrary smooth manifold M, of Morse functions f that have critical
points which have surrounding regions of non-degenerate points (sort of like continents), themselves separated by
regions of degenerate points - the union of which I will choose to call the degeneracy locus (sort of like oceans).

With this idea in mind, we get the following illustration of such a Morse function on the sphere. One can think
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of such a function as a sum of bump functions from the sphere such that the bump function is morse, i.e. only
one point has value h(p) = 1, otherwise the critical points would not be isolated. This continent and ocean idea is

illustrated in the following figure.

FI1GURE 5. Degeneracy Locus Sketch

~9% o
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