

Thm: Let G be a connected Lie gp & let $f, g: G \rightarrow H$ be Lie gp homomorphisms s.t. the Lie algebra homomorphisms $df, dg: \mathfrak{g} \rightarrow \mathfrak{h}$ are identical. Then $f \equiv g$.

Proof: Since $df = dg$ as maps $\mathfrak{g} \rightarrow \mathfrak{h}$, their transposes $f^* = g^*$ as maps $\mathfrak{h}^* \rightarrow \mathfrak{g}^*$ where we identify \mathfrak{g}^* & \mathfrak{h}^* w/ the left-invariant 1-fms on G & H .

Now, suppose $\omega_1, \dots, \omega_n$ is a basis for the LI 1-fms on H . Then we know $f^* \omega_i = g^* \omega_i \ \forall i=1, \dots, n$.

By the uniqueness in the previous theorem, it will follow that $f = g$ if we can show that the ideal \mathcal{I} in $G \times H$ generated by the

$$M_i = \pi_1^* f^* \omega_i - \pi_2^* \omega_i$$

is a different ideal.

This is now a contradiction: since $\omega_1, \dots, \omega_n$ is a basis for the LI 1-fms on H , $\{\omega_i \wedge \omega_j : i < j\}$ is a basis for the LI 2-fms.

Now, for any $k \in \{1, \dots, n\}$, $d\omega_k$ is left-invariant, so \exists constants c_{ijk} s.t. $d\omega_k = \sum_{i < j} c_{ijk} \omega_i \wedge \omega_j$.

But then

$$\begin{aligned} dM_k &= d(\pi_1^* f^* \omega_k - \pi_2^* \omega_k) = \pi_1^* f^* d\omega_k - \pi_2^* d\omega_k = \pi_1^* f^* \sum_{i < j} c_{ijk} \omega_i \wedge \omega_j - \pi_2^* \sum_{i < j} c_{ijk} \omega_i \wedge \omega_j \\ &= \sum_{i < j} c_{ijk} (\pi_1^* f^* \omega_i \wedge \pi_1^* f^* \omega_j - \pi_2^* \omega_i \wedge \pi_2^* \omega_j) \\ &= \sum_{i < j} c_{ijk} [(\pi_1^* f^* \omega_i - \pi_2^* \omega_i) \wedge \pi_1^* f^* \omega_j + \pi_2^* \omega_i \wedge (\pi_1^* f^* \omega_j - \pi_2^* \omega_j)] \end{aligned}$$

which is certainly an ideal of \mathcal{I} , & we see that \mathcal{I} is closed under exterior differentiation. □