

Math 670: Day 15

Recall we have the cochain complex

$$\Omega^0(M) \xrightarrow{d} \Omega^1(M) \xrightarrow{d} \dots \xrightarrow{d} \Omega^{n-1}(M) \xrightarrow{d} \Omega^n(M)$$

Define the k^{th} de Rham cohomology group of M to be

$$H_{dR}^k(M) := \frac{\ker d}{\text{im } d_{k-1}}$$

Ex: The 1-form $\omega = \frac{xdy - ydx}{x^2 + y^2}$ on $\mathbb{R}^2 - \{\vec{0}\}$ (or on S^1) is **closed** (in the sense of the exterior derivative) but not **exact** (in the sense of the exterior derivative). So it represents a non-trivial element of $H_{dR}^1(\mathbb{R}^2 - \{\vec{0}\})$ (or $H_{dR}^1(S^1)$).

de Rham cohomology is a **homotopy** invariant of manifolds, nearly homotopy equivalent implies identical de Rham cohomology groups.

de Rham Thm: There exists a vector space isomorphism

$$H_{dR}^k(M) \rightarrow H_k(M; \mathbb{R})^* \simeq H^k(M; \mathbb{R}).$$

In general, computing de Rham groups can be hairy... after all, the $\Omega^k(M)$ are $C^\infty(M)$ -modules, so they're infinite-dimensional as real vector spaces.

However, when the manifold has lots of symmetry, this becomes a finite-dimensional problem.

Manifolds with the appropriate sort of symmetry are called **homogeneous spaces**. We will need to build up the tools to deal with them, but here's a sample of the sort of thing that we can do:

A **homogeneous space** is a manifold admitting a transitive action of a Lie group of diffeomorphisms.

In this case, if M is the homogeneous space & G is the Lie group, let $p \in M$ & let H be the subgroup of G fixing p . Then M turns out to be diffeomorphic to G/H .

Ex: $S^n \cong \frac{SO(n+1)}{SO(n)}$, $\mathbb{C}P^n \cong \frac{SU(n+1)}{SU(n)}$, $\widetilde{G}_k \mathbb{R}^n \cong \frac{SO(n)}{SO(k) \times SO(n-k)}$, etc.

Def: A differential k -form φ on G/H is G -invariant if $d_g^* \varphi = \varphi \ \forall g \in G$.

The $\ell_g: G/H \rightarrow G/H$ is given by $\ell_g(fH) = g f H$, induced by the corresponding map $L_g: G \rightarrow G$ $f \mapsto gf$.

Commutative diagram

$$\begin{array}{ccc} G & \xrightarrow{\ell_g} & G \\ \pi \downarrow & & \downarrow \pi \\ G/H & \xrightarrow{g} & G/H \end{array}$$

Now, if φ is invl on G/H , then $\pi^* \varphi$ is invl on G since $L_g^* \pi^* \varphi = (\pi \circ \ell_g)^* \varphi = (\ell_g \circ \pi)^* \varphi = \pi^* \ell_g^* \varphi = \pi^* \varphi$.

Thm: Let G be a connctd, connected Lie gp, H a Lie subgp, & G/H the corresponding homogeneous space. Then

- (i) Each closed k -form on G/H is cotorologous to a G -invl closed k -form.
- (ii) If a G -invl closed k -form is exact, then it is also the exterior derivative of a G -invl $(k-1)$ -form.

Coroll: The cohomology of G -invl forms on G/H is isomorphic to its deRham cohomology.
