

We are now going to talk about differentiation in the context of measures. One of the ultimate goals is to prove a version of the Fundamental Theorem of Calculus for Lebesgue measure on \mathbb{R} & even \mathbb{R}^n .

It turns out that the "antiderivative" of a (locally) integrable function f will actually be a measure.

In some sense we've already seen this: for a measure space (X, \mathcal{M}, μ) & a measurable fctn $f: X \rightarrow [0, +\infty]$, we get a new measure μ_f defined by

$$\mu_f(E) := \int_E f \, d\mu.$$

And we just saw that for a measurable g , $\int_X g \, d\mu_f = \int_X g f \, d\mu$, so we symbolically write $d\mu_f = f \, d\mu$ or, playing fast & loose w/ notation,

$$\frac{d\mu_f}{d\mu} = f.$$

In general, we will say that a measure ν is differentiable w.r.t. μ if $\exists f: X \rightarrow [0, +\infty]$ s.t. $d\nu = f \, d\mu$, & we call

$$f := \frac{d\nu}{d\mu}$$

the Radon-Nikodym derivative of ν w.r.t. μ .

And so, again playing fast & loose w/ notation, $\nu = \int f \, d\mu$, where this is the "indefinite" integral.

Prop: Let μ be Lebesgue measure on $[0, +\infty)$ & let ν be a measure which is differentiable w.r.t. μ . If $\frac{d\nu}{d\mu}$ is continuous, then $F_\mu: [0, +\infty) \rightarrow [0, +\infty]$ given by $F_\mu(x) := \nu([0, x])$ is differentiable, & $\frac{d}{dx} F_\mu(x) = \frac{d}{dx} \nu([0, x]) = \frac{d\nu}{d\mu}(x) \quad \forall x$.

Now, the problem is that not every measure is differentiable w.r.t. a gen measure (e.g., Dirac measure is not diff'ble w.r.t. Lebesgue measure), but it will turn out that, for any measures μ & ν ,

$$\nu = \lambda + \rho$$

where λ is supported (hence f) on the support of the support of μ & ρ is diff'ble w.r.t. μ , which is really as good as we could have expected.

This fact is called the **Lebesgue-Radon-Nikodym Theorem**, but to prove it we need to be able to do things like write

$$\lambda = \nu - \rho.$$

Of course adding measures is no problem: for μ & ν measures, we can define $\mu + \nu$ by $(\mu + \nu)(E) = \mu(E) + \nu(E)$, and indeed, $\mu_{fg} = \mu_f + \mu_g$.

But an expression like $\nu - \rho$ may not always be positive, so first we need to introduce the concept of **Signed measures**.

The idea is that a signed measure on a measurable space (X, \mathcal{M}) should be a map $\mu: \mathcal{M} \rightarrow [-\infty, \infty]$.

What are the possible issues w/ an expression like $\nu - \rho$, which should be defined by $(\nu - \rho)(E) = \nu(E) - \rho(E)$?

- ① If $\nu(E) = \infty$ & $\rho(E) = \infty$, $\infty - \infty$ is undefined. We will fix this by allowing $\nu - \rho$ if at least one is a finite measure. This will mean $\nu - \rho$ takes values in either $[-\infty, \infty)$ or $(-\infty, \infty]$, but not both.

- ② $\nu - \rho$ is likely not to be monotone.

These considerations lead to the formal definition:

Df: A **signed measure** on (X, \mathcal{M}) is a map $\mu: \mathcal{M} \rightarrow [-\infty, \infty]$ s.t.

① $\mu(\emptyset) = 0$

② μ can take the value $+\infty$ or $-\infty$, but not both.

③ If $E_1, E_2, \dots \in \mathcal{M}$ are disjoint, then $\sum_{i=1}^{\infty} \mu(E_i)$ converges to $\mu(\bigcup_{i=1}^{\infty} E_i)$, & the convergence is absolute if the RHS is finite.

Ex: If (X, \mathcal{M}, μ) is a measure space & $f: X \rightarrow [-\infty, \infty]$ is measurable, then μ_f is a signed measure if at least one of f_+ or f_- is \mathcal{M} -integrable.

We sometimes call measures **positive measures** when we want to emphasize that they're special cases of signed measures.