

Math 617 HW #5

Due 1:00 PM Friday, April 8

1. In class we proved the one-sided Hardy–Littlewood maximal inequality in the course of proving the Lebesgue differentiation theorem. Prove the *two-sided* Hardy–Littlewood maximal inequality, which says that, for $f : \mathbb{R} \rightarrow \mathbb{C}$ absolutely integrable and $\lambda > 0$,

$$m \left(\left\{ x \in \mathbb{R} : \sup_{x \in I} \frac{1}{|I|} \int_I |f(t)| dm(t) \geq \lambda \right\} \right) \leq \frac{2}{\lambda} \int_{\mathbb{R}} |f(t)| dm(t),$$

where I ranges over all intervals of positive length containing x .

2. Given a Lebesgue measurable set $E \subseteq \mathbb{R}^d$, a point $x \in \mathbb{R}^d$ is a *point of density* of E if

$$\frac{m(E \cap B(x, r))}{m(B(x, r))} \rightarrow 1 \text{ as } r \rightarrow 0.$$

For example, the points of density of $E = [-1, 0) \cup (0, 1]$ are exactly the points in $(-1, 1)$.

Show that, if $E \subseteq \mathbb{R}^d$ is Lebesgue measurable, then almost every point in E is a point of density of E , and almost every point in the complement of E is not a point of density of E .

3. Suppose (X, \mathcal{M}, μ) is a measure space.

- (a) Let $f \in L^\infty(X, \mathcal{M}, \mu) \cap L^{p_0}(X, \mathcal{M}, \mu)$ for some $0 < p_0 < \infty$. Show that $\|f\|_{L^p} \rightarrow \|f\|_{L^\infty}$ as $p \rightarrow \infty$.
- (b) Suppose $f \notin L^\infty(X, \mathcal{M}, \mu)$. Show that $\|f\|_{L^p} \rightarrow \infty$ as $p \rightarrow \infty$.

4. Let $0 < p, q < \infty$ and let $f \in L^p(X, \mathcal{M}, \mu)$, $g \in L^q(X, \mathcal{M}, \mu)$ so that the inequality in Hölder's inequality is actually an equality. Show that, of the functions f^p and g^q , one is a scalar multiple of the other almost everywhere.

5. Suppose $f \in L^p(X, \mathcal{M}, \mu)$ for some $0 < p \leq \infty$ so that the support of f , $\text{supp}(f) = \{x \in X : f(x) \neq 0\}$, has finite measure. Prove that:

- (a) $f \in L^q(X, \mathcal{M}, \mu)$ for all $0 < q \leq p$;
- (b) $\|f\|_{L^q}^q \rightarrow \mu(\text{supp}(f))$ as $q \rightarrow 0$.

(Hence, although the following words don't really mean anything, $\mu(\text{supp}(f))$ is in some sense the 0th power of the L^0 norm of f .)