

Math 617 HW #3

Due 1:00 PM Friday, March 4

1. Suppose $f \in L^1(\mathbb{R}, \mathcal{L}, m)$ and define $F(x) := \int_{(-\infty, x]} f(t) dm(t)$. Prove that F is continuous.
2. Let (X, \mathcal{M}_X, μ) be a measure space, let (Y, \mathcal{M}_Y) be a measurable space, and let $\phi : X \rightarrow Y$ be a map such that $\phi^{-1}(E) \in \mathcal{M}_X$ for all $E \in \mathcal{M}_Y$ (such maps are sometimes called *measurable morphisms*). Define the *pushforward measure* $\phi_*\mu : \mathcal{M}_Y \rightarrow [0, +\infty]$ by

$$\phi_*\mu(E) := \mu(\phi^{-1}(E)).$$

- (a) Show that $\phi_*\mu$ is a measure on (Y, \mathcal{M}_Y) .
- (b) If $f : Y \rightarrow [0, +\infty]$ is $\phi_*\mu$ -measurable, show that

$$\int_Y f d\phi_*\mu = \int_X (f \circ \phi) d\mu.$$

- (c) If m^n is Lebesgue measure on \mathbb{R}^n and $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is an invertible linear transformation, show that

$$T_*m^n = \frac{1}{|\det T|} m^n.$$

3. Let (X, \mathcal{M}, μ) be a measure space, and let $f_1, f_2, \dots : X \rightarrow [0, +\infty]$ be a sequence of non-negative integrable functions that converge pointwise to an absolutely integrable function f . Show that

$$\int_X f_n d\mu - \int_X f d\mu - \|f - f_n\|_{L^1(X, \mathcal{M}, \mu)} \rightarrow 0$$

as $n \rightarrow \infty$. (*Hint:* Consider $\min(f_n, f)$.) (This is telling us that the difference between left and right sides of the inequality in Fatou's Lemma can be estimated by $\|f - f_n\|_{L^1(X, \mathcal{M}, \mu)}$.)

4. Let (X, \mathcal{M}, μ) be a measure space with $\mu(X) < \infty$, let (f_n) be a sequence of measurable functions, and let f be measurable. Show that if f_n converges to f in L^∞ norm, then f_n converges to f in L^1 norm. (Notice that, as in Egorov's Theorem, the assumption $\mu(X) < \infty$ is essential, as our example $\frac{1}{n}\chi_{[0, n]}$ gives a counterexample on \mathbb{R} .)
5. The assumption that $f \in L^1(X \times Y, \mathcal{M}_X \otimes \mathcal{M}_Y, \mu_X \times \mu_Y)$ is necessary. To see this, consider $X = \mathbb{N} = Y$ with $\mu_X = \mu_Y$ being counting measure, and let

$$f(x, y) = \begin{cases} 1 & \text{if } x = y \\ -1 & \text{if } x = y + 1 \\ 0 & \text{else.} \end{cases}$$

Show that the integrals

$$\int_Y f(x, y) d\mu_Y(y) \quad \text{and} \quad \int_X f(x, y) d\mu_X(x)$$

exist as absolutely integrable functions for all $x \in X$ and $y \in Y$, respectively, and so that

$$\int_X \left(\int_Y f(x, y) d\mu_Y(y) \right) d\mu_X(x) \quad \text{and} \quad \int_Y \left(\int_X f(x, y) d\mu_X(x) \right) d\mu_Y(y)$$

exist as absolutely integrable integrals, but are not equal.

6. Let (X, \mathcal{M}, μ) be a σ -finite measure space and let $f : X \rightarrow [0, +\infty]$ be measurable. Recall that $\mathcal{B}_{\mathbb{R}}$ is the Borel σ -algebra on \mathbb{R} and m is Lebesgue measure on \mathbb{R} . Show that

(a) the set $A = \{(x, t) \in X \times \mathbb{R} : 0 \leq t \leq f(x)\}$ is measurable on $\mathcal{M} \otimes \mathcal{B}_{\mathbb{R}}$ and

$$(\mu \times m)(A) = \int_X f(x) \, d\mu(x);$$

(b) we have

$$\int_X f(x) \, d\mu(x) = \int_{[0, +\infty]} \mu(f^{-1}([\lambda, +\infty])) \, dm(\lambda),$$

(When μ is a probability measure, the function inside the right hand side integral is called the *complementary cumulative distribution function*.)

Bonus Problem The example in Problem 5 might seem a bit artificial: after all, maybe the discreteness of the setting is what's causing the problem. In fact, similar examples always exist. Give an example of a Borel measurable function $f : [0, 1] \times [0, 1] \rightarrow \mathbb{R}$ so that the integrals

$$\int_{[0,1]} f(x, y) \, dm(y) \quad \text{and} \quad \int_{[0,1]} f(x, y) \, dm(x)$$

exist as absolutely integrable functions for all $x \in [0, 1]$ and $y \in [0, 1]$, respectively, and so that

$$\int_{[0,1]} \left(\int_{[0,1]} f(x, y) \, dm(y) \right) \, dm(x) \quad \text{and} \quad \int_{[0,1]} \left(\int_{[0,1]} f(x, y) \, dm(x) \right) \, dm(y)$$

exist as absolutely integrable integrals, but are not equal.