

Math 474 HW #7
Due 2:00 PM Friday, Oct. 25

1. Find the first fundamental form (i.e., E , F , and G) of the following surfaces:
 - (a) The sphere of radius r : $\vec{x}(u, v) = r(\sin u \cos v, \sin u \sin v, \cos u)$
 - (b) The helicoid: $\vec{x}(u, v) = (u \cos v, u \sin v, bv)$.
 - (c) The catenoid: $\vec{x}(u, v) = (a \cosh u \cos v, b \cosh u \sin v, u)$.
2. (Shifrin Problem 2.1.6) A parametrization $\vec{x}(u, v)$ of a surface Σ is called *conformal* if angles measured in the uv -plane agree with the corresponding angles in $T_p\Sigma$ for all points $p \in \Sigma$. Prove that the parametrization $\vec{x}(u, v)$ is conformal if and only if $E = G$ and $F = 0$.
3. (Shifrin Problem 2.1.8) Show that the parametrization of the unit sphere by inverse stereographic projection (see HW 6) is conformal.

Shown below is what you get when you map a square grid in the plane to the sphere by inverse stereographic projection. Notice that all the lines intersect perpendicularly.

