

Math 474 HW #6
Due 2:00 PM Friday, Oct. 18

1. Consider the sphere $x^2 + y^2 + z^2 = 1$ centered at the origin in \mathbb{R}^3 . We can construct a very important map called *stereographic projection* from the unit sphere to the xy -plane by defining $\text{st}(p)$ to be the intersection of the line through $p \in S^2$ and $(0, 0, 1)$ with the xy -plane (of course this map is not well defined at the point $(0, 0, 1)$).

(a) Show that the inverse map $\text{st}^{-1} : \mathbb{R}^2 \rightarrow S^2 \setminus \{(0, 0, 1)\}$ is given by

$$\text{st}^{-1}(u, v) = \left(\frac{2u}{u^2 + v^2 + 1}, \frac{2v}{u^2 + v^2 + 1}, \frac{u^2 + v^2 - 1}{u^2 + v^2 + 1} \right).$$

(b) Show that st^{-1} is a regular parametrization of $S^2 \setminus \{(0, 0, 1)\}$.

(c) Use st^{-1} and the corresponding map $\mathbb{R}^2 \rightarrow S^2 \setminus \{(0, 0, -1)\}$ to prove (again) that S^2 is a regular surface.