

Isometries of the Hyperbolic Plane

Some obvious isometries of \mathbb{H} :

① Any horizontal translation $h: (x, y) \mapsto (x+a, y)$ (or $z \mapsto z+a$ for $a \in \mathbb{R}$)

Check this has no impact on the first fund. form $E = \frac{1}{y^2} = G$, $F = 0$ since $dh = I_2$ & the y -coord. is unchanged.

② A scaling from the origin $h: (x, y) \mapsto (\alpha x, \alpha y)$ (or $z \mapsto \alpha z$)

Again, no change in 1st fund. form since $dh = \begin{bmatrix} \alpha & 0 \\ 0 & \alpha \end{bmatrix}$ & $\langle dh[0], dh[0] \rangle = \alpha^2 E_{(0,0)} = \frac{\alpha^2}{\alpha^2 y^2} = \frac{1}{y^2}$ etc.

Just from these 2 we see that the isometry group of \mathbb{H} acts transitively.

An obvious isometry of \mathbb{D} :

③ Any rotation around the origin.

$$dh = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \quad \& \quad \langle dh[0], dh[0] \rangle = \left\langle \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}, \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix} \right\rangle = \sin^2 \theta E - 2 \sin \theta \cos \theta F + \cos^2 \theta G \\ = (\sin^2 \theta + \cos^2 \theta) \frac{4}{(1-x^2-y^2)^2} = \frac{4}{(1-x^2-y^2)^2}$$

In fact compositions of these 3 basic isometries give **all** orientation-preserving isometries of the hyperbolic plane.