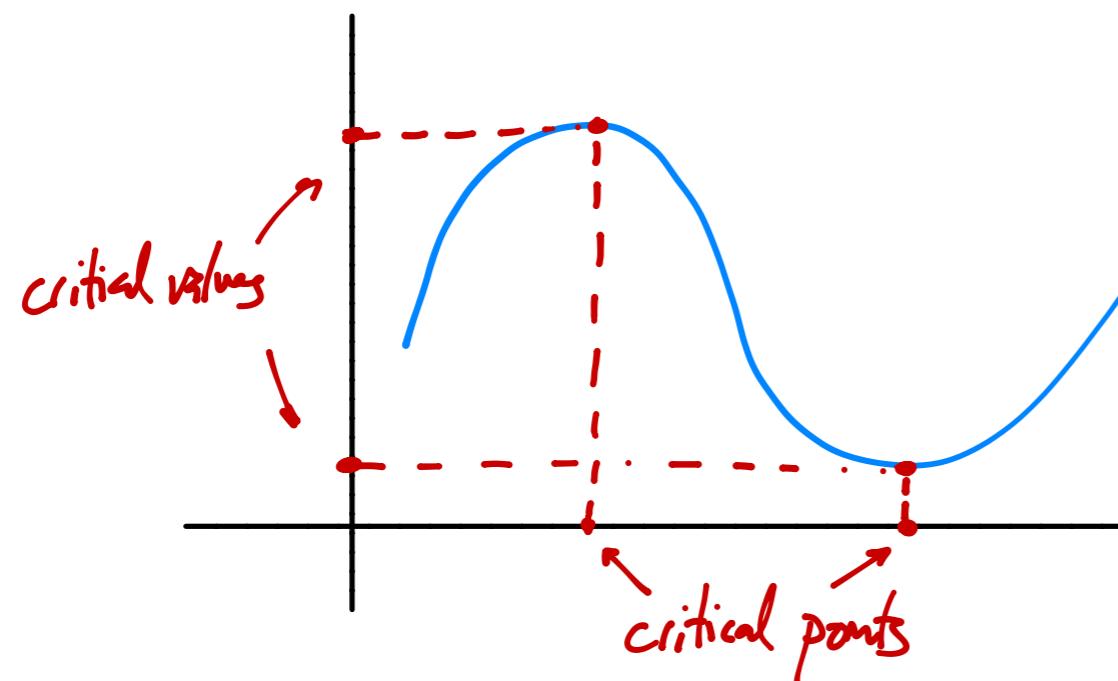


We saw last time that surfaces locally look like graphs of functions $f: \mathbb{R}^2 \rightarrow \mathbb{R}$. This is helpful for calculating, but not really so helpful for **constructing** surfaces. For that, a different connection to functions is useful.

Df: Given a differentiable map $F: U \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m$, a point $p \in U$ is a **critical point** of F if $dF_p: \mathbb{R}^n \rightarrow \mathbb{R}^m$ is not onto (i.e., has rank $< m$). The image $F(p)$ is called a **critical value**, & points in the range of F which are not critical values are **regular values**.



Prop: If $F: U \subseteq \mathbb{R}^3 \rightarrow \mathbb{R}$ is a differentiable function & $a \in F(U)$ is a regular value, then $F^{-1}(a)$ is a regular surface in \mathbb{R}^3 .

I won't bore you with the proof (which you can find in §2-2 of do(Geo)), but it's similar to our previous proof, except it depends on the **Implicit Function Theorem** rather than the **Inverse Function Theorem**.

Ex: The ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ is a regular surface (note that this includes the sphere when $a=b=c=1$). To check, notice that the ellipsoid is $F^{-1}(0)$ for $F(x, y, z) = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1$. Then

$$dF = \begin{bmatrix} \frac{2x}{a^2} & \frac{2y}{b^2} & \frac{2z}{c^2} \end{bmatrix}.$$

This fails to have rank 1 only when $x=y=z=0$, so the only critical value is $F(0, 0, 0) = -1$. Hence, 0 is a regular value & $F^{-1}(0)$ is a regular surface.

Ex: The hyperboloid $-x^2 - y^2 + z^2 = c$ is usually a regular surface. When can things go wrong?

Well, the hyperboloid is $F^{-1}(c)$ for $F(x, y, z) = -x^2 - y^2 + z^2$. Now,

$$dF = \begin{bmatrix} -2x & -2y & 2z \end{bmatrix},$$

which is rank 1 except when $x=y=z=0$, so the only critical value is $F(0, 0, 0) = 0$ & indeed we see in the animation

But $F^{-1}(0)$ is a cone, which is not a regular surface.

Notice that when $c > 0$ the hyperboloid is disconnected (this is usually called the *two-sheeted hyperboloid*), which is totally fine by the definition of regular surface.

This is a *very* useful way to caught regular surfaces & to prove that things are regular surfaces.

Now we turn to the problem of developing a theory of functions on surfaces. The motivating question is:

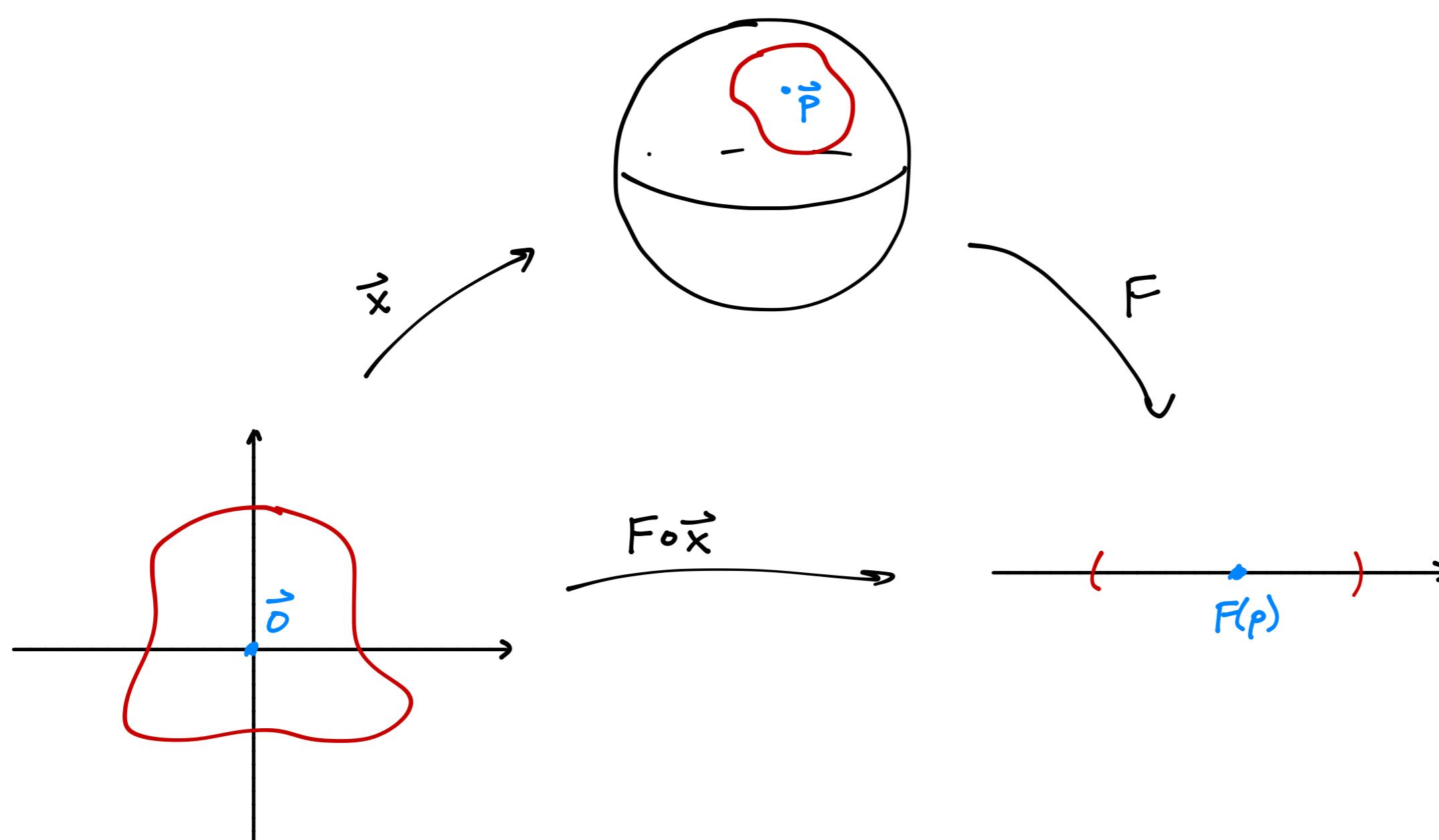
What does it mean to say that a function on a regular surface Σ is "differentiable"?

Or, maybe even better:

Differentiable with respect to what?

The short answer is: with respect to the local coordinates on Σ :

Df. Let $F: V \subseteq \Sigma \rightarrow \mathbb{R}$ be a function defined on an open set of the regular surface Σ . Then F is **differentiable** at $\vec{p} \in V \subseteq \Sigma$ if, for some parametrization $\vec{x}: U \subseteq \mathbb{R}^2 \rightarrow \Sigma$ w/ $\vec{x}(\vec{o}) = \vec{p}$, the composition $F \circ \vec{x}: U \rightarrow \mathbb{R}$ is differentiable at \vec{o} .



In other words, using local coords we've turned F into a function on \mathbb{R}^2 , where we know perfectly well what it means to be differentiable.

Of course, the thing you should be concerned about is: what if you pick the wrong local coordinates? Could $F \circ \vec{x}$ be diff'ble while

$F \circ \vec{y}$ isn't?

As it turns out, the answer is no, this doesn't happen.