

Math 474 HW #4

Due 2:00 PM Friday, Oct. 30

1. (Required Problem) Find the first fundamental form of the following surfaces:

- (a) The ellipsoid $\vec{x}(u, v) = (a \sin u \cos v, b \sin u \sin v, c \cos u)$.
- (b) The elliptic paraboloid $\vec{x}(u, v) = (au \cos v, bu \sin v, u^2)$.
- (c) The hyperbolic paraboloid $\vec{x}(u, v) = (au \cosh v, bu \sinh v, u^2)$.
- (d) The two-sheeted hyperboloid $\vec{x}(u, v) = (a \sinh u \cos v, b \sinh u \sin v, c \cosh u)$.

Choose an additional 4 of the following 7 problems to do.

2. Consider the sphere $x^2 + y^2 + z^2 = 1$ centered at the origin in \mathbb{R}^3 . We can construct a very important map st from the sphere to the xy -plane by defining $st(p)$ to be the intersection of the line through $p \in S^2$ and $(0, 0, 1)$ with the xy -plane (of course this map is not well defined at the point $(0, 0, 1)$).

- (a) Show that the inverse map $st^{-1} : \mathbb{R}^2 \rightarrow S^2 \setminus \{(0, 0, 1)\}$ is given by

$$st^{-1}(u, v) = \left(\frac{2u}{u^2 + v^2 + 1}, \frac{2v}{u^2 + v^2 + 1}, \frac{u^2 + v^2 - 1}{u^2 + v^2 + 1} \right).$$

- (b) Show that st^{-1} is a regular parametrization of $S^2 \setminus \{(0, 0, 1)\}$.
- (c) Find the first fundamental form I_p of this parametrization (as a matrix).

3. Let Σ be the hyperboloid of revolution given by $x^2 + y^2 - z^2 = 1$, which intersects the xy -plane in the unit circle $s^2 + y^2 = 1$. Prove that Σ intersects the xy -plane orthogonally.

4. (Shifrin Problem 2.1.6) A parametrization $\vec{x}(u, v)$ of a surface Σ is called *conformal* if angles measured in the uv -plane agree with the corresponding angles in $T_p\Sigma$ for all points $p \in \Sigma$. Prove that the parametrization $\vec{x}(u, v)$ is conformal if and only if $E = G$ and $F = 0$.

5. Suppose Σ is parametrized by $\vec{x} : \mathbb{R}^2 \rightarrow \Sigma$ where

$$\vec{x}(u, v) = \alpha_1(u) + \alpha_2(v),$$

where α_1 and α_2 are regular curves. For example, if $\alpha_1(u) = (\cos u, \sin u, 0)$ and $\alpha_2(v) = (0, 0, v)$, then Σ is an infinite cylinder.

Show that the tangent planes along the curve

$$\beta(s) = \vec{x}(s, v_0)$$

are parallel to a line. What's the line?

6. If $\alpha : [0, 1] \rightarrow \mathbb{R}^3$ is a regular parametrized curve with unit tangent vector $\vec{T}(s)$, then the vectors $\vec{N}_1, \vec{N}_2 : [0, 1] \rightarrow \mathbb{R}^3$ form a *framing* for α if the triple $(\vec{T}(s), \vec{N}_1(s), \vec{N}_2(s))$ is an orthonormal basis for \mathbb{R}^3 for all $s \in [0, 1]$ (for example, the Frenet frame and the Bishop frame give framings).

The *tube* around α of radius r is the surface parametrized by

$$\vec{x}(u, v) = \alpha(u) + r(\cos v \vec{N}_1(u) + \sin v \vec{N}_2(u)).$$

Find the Gauss map $\vec{N}(u, v)$ of the tube.

7. Let $\alpha(s) = (x(s), 0, z(s))$ be an arclength parametrized curve in the xz -plane which does not intersect the z -axis. The corresponding surface of revolution Σ generated by α is given by rotating α around the z -axis. This surface has the parametrization

$$\vec{x}(u, v) = (x(v) \cos u, x(v) \sin u, z(v)).$$

(a) (Pappus' Theorem) Prove that the area of Σ is

$$\text{Area}(\Sigma) = 2\pi \int_0^L x(s) \, ds,$$

where L is the length of α .

(b) Suppose α is the circle of radius r_1 in the xz -plane centered at $(r_2, 0, 0)$ with $r_2 > r_1$. Then the corresponding surface of revolution is a torus; use (a) to compute its area.

8. (Shifrin Problem 2.1.14) A parametrization $\vec{x}(u, v)$ of a regular surface Σ is called a *Chebyshev net*¹ if the opposite sides of any quadrilateral formed by the coordinate curves $u = \text{const}$ and $v = \text{const}$ have equal length.

(a) Prove that the parametrization is a Chebyshev net if and only if $\frac{\partial E}{\partial v} = \frac{\partial G}{\partial u} = 0$.

(b) Prove that it is possible to locally reparametrize a Chebyshev net by $\tilde{\vec{x}}(\tilde{u}, \tilde{v})$ so that $\tilde{E} = \tilde{G} = 1$ and $\tilde{F} = \cos \theta$ (meaning that the \tilde{u} - and \tilde{v} -curves are parametrized by arclength and meet at angle θ , which is really a function $\theta(\tilde{u}, \tilde{v})$ of \tilde{u} and \tilde{v}).

¹“Chebyshev” is just one of many Roman transliterations of the Russian name Чебышёв. This is the same name as Chebychev, Chebyshev, Tchebychef, Tchebychev, Tschebyschev, etc.