

Math 469 HW #6
Due 1:00 PM Friday, Mar. 13

1. (Axler Problem 5.A.22) Suppose $T \in \mathcal{L}(V)$ and there exist nonzero vectors $v, w \in V$ so that

$$Tv = 3w \quad \text{and} \quad Tw = 3v.$$

Prove that 3 or -3 is an eigenvalue of T .

2. (Axler Problem 6.A.12) Prove that

$$(x_1 + \cdots + x_n)^2 \leq n(x_1^2 + \cdots + x_n^2)$$

for all positive integers n and all real numbers x_1, \dots, x_n .

3. (Axler Problem 6.A.24) Suppose $S \in \mathcal{L}(V)$ is injective and that V comes equipped with some inner product $\langle \cdot, \cdot \rangle$. Define a new inner product $\langle \cdot, \cdot \rangle_S$ by

$$\langle u, v \rangle_S = \langle Su, Sv \rangle$$

for all $u, v \in V$. Show that $\langle \cdot, \cdot \rangle_S$ is an inner product on V .

4. (Axler Problem 6.b.2) Suppose e_1, \dots, e_m is an orthonormal list of vectors in V . Let $v \in V$.
Prove that

$$\|v\|^2 = |\langle v, e_1 \rangle|^2 + \cdots + |\langle v, e_m \rangle|^2$$

if and only if $v \in \text{span}(e_1, \dots, e_m)$