

Math 469 HW #4
Due 1:00 PM Friday, Feb. 21

1. (Axler Problem 3.C.3) Suppose V and W are finite-dimensional and $T \in \mathcal{L}(V, W)$. Prove that there exist a basis of V and a basis of W so that, with respect to these bases, all entries of $\mathcal{M}(T)$ are 0 except that the entries in row j , column j equal 1 for $1 \leq j \leq \dim \text{range } T$.
2. (Axler Problem 3.D.2) Suppose V is finite-dimensional and $\dim V > 1$. Prove that the set of noninvertible operators on V is not a subspace of $\mathcal{L}(V)$.
3. (Axler Problem 3.D.4) Suppose W is finite-dimensional and $T_1, T_2 \in \mathcal{L}(V, W)$. Prove that $\text{null } T_1 = \text{null } T_2$ if and only if there exists an invertible operator $S \in \mathcal{L}(W)$ so that $T_1 = ST_2$.
4. (Axler Problem 3.D.5) Suppose V is finite-dimensional and $T_1, T_2 \in \mathcal{L}(V, W)$. Prove that $\text{range } T_1 = \text{range } T_2$ if and only if there exists an invertible operator $S \in \mathcal{L}(V)$ so that $T_1 = T_2S$.